期刊文献+

面向微博用户标签推荐的关系约束主题模型 被引量:8

Relationship Bind Topic Model Toward Tag Recommendation for Micro-Blog Users
下载PDF
导出
摘要 社会化标签系统允许用户使用个性化的词汇对网络中的资源进行标注而被用户广泛接受。在微博网络中,用户可以为自己加注标签以推广自己或者方便别人找到自己。深入分析了微博用户数据,总结了微博用户标签的特点,针对LDA(latent Dirichlet allocation)主题模型在处理短文本时存在的不足,提出了一种基于好友关系约束主题模型。在此基础上对微博用户标签进行主题分析,计算用户的主题分布,对标签词进行聚类,并最终为用户推荐标签。通过对比实验证明了该方法可以提高标签推荐的准确度。 Social tagging systems which allow users to use personalized words to annotate resources are widely accepted by users. In micro-blog network, user can attach personalized labels to himself/herself so as to promote his/her recognition or facilitate others to find him/her. With the deep analysis of the micro-blog dataset, this paper summarizes the characteristics of user' s tag. Aiming at the shortcomings of LDA (latent Dirichlet allocation) topic model in dealing with short texts, this paper proposes a new relationship bind topic model. After that, the user' s topic distribution is calculated, and topic words are clustered. At last, tag recommendation is performed. The comparative experiments show that the proposed method can improve the accuracy and diversity of tag recommendation task.
出处 《计算机科学与探索》 CSCD 2014年第3期288-295,共8页 Journal of Frontiers of Computer Science and Technology
基金 中央高校基本科研业务费专项基金No.N110316001 教育部-英特尔信息技术专项科研基金No.MOE-INTEL-2012-06~~
关键词 社会化标签 推荐系统 主题模型 社会网络分析 social tagging recommendation system topic model social network analysis
  • 相关文献

参考文献15

  • 1Sigurbjornsson B, van Zwol R. Flickr tag recommendation based on collective knowledge[C]//Proceedings of the 17th International Conference on World Wide Web (WWW '08), Beijing, China, Apr 21-25, 2008. New York, NY, USA: ACM, 2008: 327-336.
  • 2Krestel R, Fankhauser P. Personalized topic-based tag recommendation[J]. Neurocomputing, 2012, 76(1): 61-70.
  • 3张子柯,周涛,张翼成.Tag-Aware Recommender Systems:A State-of-the-Art Survey[J].Journal of Computer Science & Technology,2011,26(5):767-777. 被引量:20
  • 4Sood S, Owsley S, Hammond K, et al. TagAssist: automatic tag suggestion for blog posts[C]//Proceedings of the International Conference on Weblogs and Social Media (ICWSM ' 07), Colorado, USA, Mar 26-28,2007.
  • 5Jaschke R, Marinho L, Hotho A, et al. Tag recommendations in folksonomies[C]/ILNCS 4702: Proceedings of the 11th European conference on Principles and Practice of Knowledge Discovery in Databases (PKDD '07), Warsaw, Poland, Sep 17-21,2007. Berlin, Heidelberg: Springer-Verlag, 2007: 506-514.
  • 6Liu Zhiyuan, Shi Chuan, Sun Maosong. FolkDiffusion: a graph-based tag suggestion method for folksonomies[C]// LNCS 6458: Proceedings of the 6th Asia Information Retrieval Societies Conference (AIRS' 10), Taipei, China, Dec 1-3, 2010. Berlin, Heidelberg: Springer-Verlag, 2010: 231-240.
  • 7Guan Ziyu, Bu Jiajun, Mei Qiaozhu, et al. Personalized tag recommendation using graph-based ranking on multi-type interrelated objects[C]//Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '09). New York, NY, USA: ACM, 2009: 540-547.
  • 8Zhou Tao, Ren Jie, Medo M, et al. Bipartite network projection and personal recommendation[J]. Physical Review E, 2007,76(4): 046115.
  • 9Zhang Zike, Zhou Tao, Zhang Yicheng. Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(1): 179-186.
  • 10Zhang Ning, Zhang Yuan, Jie Tang. A tag recommendation system based on contents[ C]/ /Proceedings of the 2009 ECML PKDD Discovery Challenge, Bled, Slovenia, 2009: 285-295.

二级参考文献25

  • 1SigurbjSrnsson B, van Zwol R. Flickr tag recommendation based on collective knowledge. In Proc. the 17th Inter- national Conference on World Wide Web, Beijing, China, Apr. 21-25, 2008, pp.327-336.
  • 2Smeulders A, Worring M, Santini S, Gupta A, Jain R. Content-based image retrieval at the end of the early years. IEEE Transactions Pattern Analysis Machine Intelligence, 2000, 22(12): 1349-1380.
  • 3Ames M, Naaman IV[. Why we tag: Motivations for annota- tion in mobile and online media. In Proc. the 2007 SIGCHI Conference on Human Factors in Computing Systems, San Jose, USA, Apr. 28-May 3, 2007, pp.971-980.
  • 4Gemmell J, Ramezani M, Schimoler T, Christiansen L, Mobasher B. The impact of ambiguity and redundancy on tag recommendation in folksonomies. In Proc. the 3rd ACM Conference on Recommender Systems, New York City, USA, Oct. 23-25, 2009, pp.45-52.
  • 5Vojnovic M, Cruise J, Gunawardena D, Marbach P. Ranking and suggesting popular items. IEEE Transactions on Know- ledge and Data Engineering, 2009, 21(8): 1133-1146.
  • 6Guan Z Y, Bu J J, Mei Q Z, Chen C, Wang C. Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. In Proe. the 32nd Annual International ACM SIGIR Conference on Research and Development in In- formation Retrieval, Boston, USA, July 19-23, 2009, pp.540- 547.
  • 7Yin D W, Xue Z Z, Hong L J, Davison B D. A probabilistic model for personalized tag prediction. In Proc. the 16th ACMSIGKDD International Conference on Knowledge Discovery and Data Ming, Washington, USA, Jul. 25-28, 2010, pp.959- 968.
  • 8Lipczak M, Milios E. Learning in efficient tag recommenda- tion. In Proc. the -th ACM Conference on Recommender Systems, Barcelona, Spain, Sept. 26-30, 2010, pp.167-174.
  • 9Koren Y. Factorization meets the neighborhood: A multi- faceted collaborative filtering model. In Proc. the l-th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, USA, Aug. 24-27, 2008, pp.426- 434.
  • 10J/ischke R, Marinho L, Hotho A, Schmidt-Thieme L, Stumme G. Tag recommendations in folksonomies. In Proc. the 11th European Conference on Principles and Practice of Know- ledge Discovery in Databases, Warsaw, Poland, September 17-21, 2007, pp.506-514.

共引文献23

同被引文献126

  • 1姜晓伟,王建民,丁贵广.基于主题模型的微博重要话题发现与排序方法[J].计算机研究与发展,2013,50(S1):179-185. 被引量:12
  • 2姜望琪.Zipf与省力原则[J].同济大学学报(社会科学版),2005,16(1):87-95. 被引量:145
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 4卜小蝶.浅谈社会性标记之意涵与应用[EB/OL].[2007-08-15].http://www.1ib.tku.edu.tw/libintro/pub/web20&lib_semina/social.tag_ft.pdf.
  • 5Vander Wal T. Folksonomy coinage and definition [ EB/OL ]. [ 2014 - 05 - 06 ]. http ://vanderwal. net/folksonomy, html.
  • 6Smith G. Tagging: People-powered metadata for the social Web [ M ]. Berkeley: New Riders, 2008.
  • 7Golder S A, Huberman B A. The structure of collaborative tagging systems[J]. Journal of Information Science, 2006, 32 (2) :198 - 208.
  • 8Sen S, I.am S K, Rashid A M, et al. Tagging, communities, vo- cabulary, evolution [ C ]//Proceedings of the 20th AnniversaryConference on Computer Supported Cooperative Work. New York: ACM, 2006 : 181 - 190.
  • 9Gupta M, Li Ri, Yin Zhijun, et al. Survey on social tagging tech- niques [ J ]. ACM SIGKDD Explorations Newsletter, 2010,12 ( 1 ) : 58 - 72.
  • 10Marlow C, Naaman M, Boyd D, et al. HT06, tagging paper, tax- onomy, Flickr, academic article, to read [ C ]//Proceedings of the 17th Conference on Hypertext and hypermedia. New York: ACM, 2006:31 -40.

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部