期刊文献+

非齐次隐马尔可夫因子模型期望最大化算法 被引量:1

Expectation-Maximization Algorithm about Non-Homogenous Hidden Markov Factor Model
下载PDF
导出
摘要 潜变量模型在刻画因子之间的相互关系以及因子与观测变量之间的关联性时具有重要作用。在实际应用中,观测数据往往呈现出时序变异、多峰、偏态等特性,因此将经典的潜变量模型延伸到非齐次隐马尔可夫潜变量模型,并且为避免对完全数据的积分计算,将期望最大化(expectation-maximization,EM)算法引入到似然函数的计算上;采用Akaike信息准则和Bayes信息准则选择合适的模型,提出了相应的统计计算和检验方法,有效解决了隐马尔可夫模型中的最大估算似然函数问题;最后选择心理-健康数据进行了实验,实验结果表明该方法是有效的。 Latent variable model plays an important role in characterizing interrelationship among factor variables and constructing relationships between factor and observed variable. However, in real applications, data set often takes on the temporal variability, multimode, skewness, and so on. This paper extends the classic latent variable model to the latent variable model mixed with non-homogenous hidden Markov model. In order to avoid integral about complete data, this paper introduces the expectation-maximization (EM) algorithm to calculate the likelihood function. At the same time, this paper presents the corresponding statistics using the Akaike information criterion and the Bayes information criterion to select appropriate model, which effectively solves the estimation problem in the hidden Markov model. Finally, the experiments are carded out in the mental-health data and the results show that the method is effective.
出处 《计算机科学与探索》 CSCD 2014年第3期359-367,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61306046 安徽省自然科学基金Nos.070412061 10040606Q42~~
关键词 隐马尔可夫模型 潜变量模型 期望最大化(EM) 向前向后递推 Key wards: hidden Markov model latent variable model expectation-maximization (EM) forward-backward recursion
  • 相关文献

参考文献23

  • 1Bollen K A. Structural equations with latent variables[M]. New Jersey: John Wiley & Sons, Inc, 1989: 45-78.
  • 2Lee S Y. Structural equation modeling: a Bayesian perspective[M]. New York: Springer-Verlag, 2007: 26-31.
  • 3Skrondal A, Rabe-Hesketh S. Generalized latent variable modeling: multilevel, longitudinal, and structural equation models[M]. Boca Raton Florida: Chapman and Hall/CRC, 2004: 123-134.
  • 4Joreskog K G, Sorborn D. LISREL 8: structural equation modeling with the SIMPLIS command language[M]. Chicago: Scientific Software, 1993: 1-202.
  • 5Bentler P M, Wu E. EQS structural equations program manua1[M]. Encino, CA: Multivariate Software, 1995: 1-207.
  • 6MacDonald I L, Zucchini W. Hidden Markov models and other models for discrete-valued time series[M]. London: Chapman & Hall, 1997: 164-182.
  • 7Cappe 0, Moulines E, Ryden T. Inference in hidden Markov models[M]. New York: Springer, 2005: 120-134.
  • 8Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989,77(2): 257-284.
  • 9Fredkin D R, Rice J A. Maximum likelihood estimation and identification directly from single-channel recordings[J]. Proceedings of the Royal Society B: Biological Sciences, 1992,249(1325): 125-132.
  • 10Leroux B G, Puterman M L. Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models[J]. Biometrics, 1992,48(2): 545-558.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部