期刊文献+

交流电沉积实现微纳器件定向连接研究

Research on oriented connection MEMS/NEMS device implemented by AC electrodeposition
下载PDF
导出
摘要 使用交流电化学方法定向制备了预制微电极之间的电连接。通过调节交流电压与偏置直流电压幅值可以控制电连接的生长方向。如果施加的交流电压幅值高于生成电连接的电压阈值,并且该值恒定时,频率越小,浓度越大,电连接晶体越粗壮;而当电解液浓度与频率恒定时,电压幅值变化对形貌影响较小。有限元仿真模拟进一步说明:当施加的交流电压高于阈值时,电极处于交流电渗流上游。电极扩散层厚度增加将诱导电极之间电连接晶体的生长。在交流电压上叠加直流偏置电压时,电连接晶体从偏置电压相对较负的一端向另一端生长。伏安特性测试结果表明:该连接具有优异的接触特性。 Electric connections between prepared microelectrodes are fabricated directionally utilizing the AC electrochemical method.Growth directions of electric connection can be controlled through tuning amplitude of AC and biased DC voltage.The observations illustrated that if amplitude of AC frequency and higher electrolyte concentration gave rise to thicker and denser dendrite crystals when the applied AC voltage magnitude is higher than the threshold for interconnect formation.It is also demonstrated that the amplitude variation of AC signal exerts smaller effect on interconnect morphologies when electrolyte concentrations and AC frequencies are kept constant.Finite element simulation further illustrates that the electrodes locate at the upper flow of AC electroosmosis when the AC voltage is higher than the threshold,and increases of thickness of diffusion layer near the electrode induces the growth of electric connection crystals between the electrodes.When the AC voltage is DC biased,the interconnect crystals are lean to grow from the relative negative electrode to the other.Results of volt- ampere characteristics test shows that this connection has excellent contact performance.
出处 《传感器与微系统》 CSCD 北大核心 2014年第3期5-7,11,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(513752 51205276 51105267 51375263) 博士后科学基金资助项目(20110491629 2013T60268)
关键词 电沉积 枝晶 电连接 接触电阻 交流电渗 electrodeposition dendrite electric connection contact resistance AC electroosmosis
  • 相关文献

参考文献1

二级参考文献33

  • 1Cheng, G.; Siles, P. F.; Bi, F.; Cen, C.; Bogorin, D. F.; Bark, C. W.; Folkman, C. M.; Park, J.-W.; Eom, C.-B.; Medeiros-Ribeiro, G.; et al. Sketched oxide single-electron transistor. Nat. Nanotechnol. 2011, 6, 343-347.
  • 2Blunt, M. O.; Russell, J. C.; Gimenez-Lopez, M. d. C.; Taleb, N.; Lin, X.; Schroder, M.; Champness, N. R.; Beton, P. H. Guest-induced growth of a surface-based supramolecular bilayer. Nat. Chem. 2011, 3, 74—78.
  • 3Wang, D.; Sheriff, B. A.; Heath, J. R. Silicon p-FETs from ultrahigh density nanowire arrays. Nano Lett. 2006, 6, 1096-1100.
  • 4Kuzyk, A. Dielectrophoresis at the nanoscale. Electrophoresis 2011,32, 2307-2313.
  • 5Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Heath, J. R. Ultrahigh-density nanowire lattices and circuits. Science 2003, 300, 112-115.
  • 6Yang, P.; Yan, R.; Fardy, M. Semiconductor nanowire: What’s next? Nano Lett. 2010,10, 1529-1536.
  • 7Mijatovic, D.; Eijkel, J. C. T.; van den Berg, A. Technologies for nanofluidic systems: Top-down vs. bottom-up—A review. Lab Chip 2005, 5, 492-500.
  • 8He, B.; Morrow, T. J.; Keating, C. D. Nanowire sensors for multiplexed detection of biomolecules. Curr. Opin. Chem. Biol. 2008, 12, 522-528.
  • 9Lai, S.; Hafher, J. H.; Halas, N. J.; Link, S.; Nordlander, P. Noble metal nanowires: From plasmon waveguides to passive and active devices. Acc. Chem. Res. 2012, 45, 1887-1895.
  • 10Yogeswaran, U.; Chen, S.-M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008, 8, 290-313.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部