期刊文献+

狭义相对论数学基础的探讨

Discussion to Mathematical Foundation of Special Relativity
原文传递
导出
摘要 狭义相对论的变革点就是相对时空观,而相对论时空与非欧几何学有着密切的联系.在介绍了传统的Minkowski空间后,引入双曲虚单位,其所构造的双曲复数对应双曲Minkowski复空间.利用双曲Minkowski空间复数运算规则,可以使高速运动客体的物理规律与复数的性质结合起来,为解决狭义相对论的普遍形式提供新的数学工具. The innovation point of special relativity is the relativistic space-time concept,which is closely related with geometry.In this paper,we first introduce the traditional Minkowski space,then give the hyperbolic complex number constructed by hyperbolic imag inary unit,which is corresponding to hyperbolic Minkowski space.By use of the complex operational rules of hyperbolic Minkowski space,we can make the physical laws of high-speed moving object combine with properties of complex numbers.It will provide new mathematical foundation for the general form of special relativity.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第3期211-216,共6页 Mathematics in Practice and Theory
关键词 相对论时空 双曲Minkowski空间 LORENTZ变换 relativistic space time hyperbolic Minkowski space Lorentz transformation
  • 相关文献

参考文献7

  • 1赵展岳.相对论导引[M]北京:清华大学出版社,2003.
  • 2郑庆璋;崔世治.相对论与时空[M]西安:陕西科学技术出版社,2000.
  • 3Baylis William E. Clifford (Geometric) Algebra with Applications to Physics,Mathematics and Engineering[M].Birkh(a)user,1996.
  • 4于学刚.狭义相对论和量子理论一元化表述[M]北京:科学出版社,2012.
  • 5于学刚,高云娥,赵征.一类Minkowski复空间的拟距离和奇异性质[J].数学的实践与认识,2012,42(19):228-233. 被引量:2
  • 6于学刚,于学钎.双曲复函与相对论[J].数学物理学报(A辑),1995,15(4):435-441. 被引量:26
  • 7Yu Xueqian,Huang Qiunan,Yu Xuegang. Clifford algebra and the four-dimensional Lorentz transformation[J].Advances in Applied Clifford Algebras,2002,(01):13-19.

二级参考文献12

  • 1于学刚,于学钎.双曲复函与相对论[J].数学物理学报(A辑),1995,15(4):435-441. 被引量:26
  • 2于学刚,第2届国际非线性力学会议论文集,1993年
  • 3熊锡金,泛复变函数理论及其在数学与物理中的应用,1988年
  • 4熊锡金,武汉大学学报,1980年,1卷,1期,16页
  • 5团体著者
  • 6Baylis William E. Clifford (Geometric) Algebra with Applications to Physics, Mathematics and Engineering[M]. Birkhauser,1996.
  • 7Yu Xuegang. Hyperbolic multi-topology and the basic principle in quantum mechanics[J]. Advances in Applied Clifford Algebras, 1999, 9(1): 109-118.
  • 8Kopczyfiski W. and R. Maszczyk, Spinorial idempotents in the Clifford algebras three-dimensional vector spaces[J]. Advances in Applied Clifford Algebrasl, 1991(1): 85-93.
  • 9Keller J. Spinors as a basis of a geometric super-algebra[J], Advances in Applied Clifford Algebras, 1991, 1(1): 31-50.
  • 10Yu Xuegang. Hyperbolic Hilbert space[J]. Advances in Applied Clifford Algebras, 2000, 10(1): 49-60.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部