摘要
Targeted genome modifications with the Cas9/gRNA system derived from the clustered regularly interspaced short palin- dromic repeat/CRISPR-associated (CRISPR/Cas) system have been successfully used in cultured human cells as well as in most model organisms, including zebrafish (Danio rerio), mouse, and fruit fly (Chang et al., 2013; Cong et al., 2013; Gratz et al., 2013; Hwang et al., 2013; Jao et al., 2013; Shen et al., 2013; Wei et al., 2013). Its application in zebrafish is particu- larly attractive due to the ease of handling this organism and the simple application of this method by direct injection of Cas9/ gRNA. However, the information about its specificity in this organism is very limited and needs further evaluation. In addition, it is conceivable that a Cas9 mRNA optimized for zebrafish codon preference could enhance its activity.
Targeted genome modifications with the Cas9/gRNA system derived from the clustered regularly interspaced short palin- dromic repeat/CRISPR-associated (CRISPR/Cas) system have been successfully used in cultured human cells as well as in most model organisms, including zebrafish (Danio rerio), mouse, and fruit fly (Chang et al., 2013; Cong et al., 2013; Gratz et al., 2013; Hwang et al., 2013; Jao et al., 2013; Shen et al., 2013; Wei et al., 2013). Its application in zebrafish is particu- larly attractive due to the ease of handling this organism and the simple application of this method by direct injection of Cas9/ gRNA. However, the information about its specificity in this organism is very limited and needs further evaluation. In addition, it is conceivable that a Cas9 mRNA optimized for zebrafish codon preference could enhance its activity.
基金
partially supported by the National Natural Science Foundation of China (No. 31110103904)
the National Program on Key Basic Research Project (973 Program) of the Ministry of Science and Technology of China (Nos. 2011CBA01000 and 2012CB945101)