期刊文献+

群缠绕模范畴的可分函子

Separable Functors of the Category for Group-entwined Modules
下载PDF
导出
摘要 设π是1个群.在Hopfπ-代数情形下,π-缠绕结构和π-缠绕模的概念被引入,并得到了π-缠绕模范畴上的忘却函子可分的充要条件,其中忘却函子忘却的是π-模作用.最后,作为应用证明了π-缠绕模的Maschke-type定理. Let n be a group. In this note, we introduce the definition of π-entwining structures and n-entwined modules over Hopf π-algebras, and obtain necessary and sufficient conditions for the functor on the category of π-entwined modules that forgets the π-A-action to he separable. As an application, we prove the Maschke-type theorem for n-entwined modules.
作者 董丽红 王磊
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2014年第1期21-25,共5页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金青年基金(11101128) 河南省教育厅科学技术研究重点项目(14B110003)
关键词 HOPF Π-代数 π-缠绕结构 π-缠绕模 正规余积分 Hopf n-algebra n-entwining structure n-entwined module normalized cointegral
  • 相关文献

参考文献12

  • 1Turaev V. Crossed group-categories [J]. Arab J Sci Eng, 2008, 33(2C) : 483-503.
  • 2Turaev VI Homotopy Quantum Field Theory[M]. Eurich-European Mathematical Society,2010.
  • 3Caenepeel S, De Lombaerde M. A categorical approach to Turaev's Hopf group-coalgebras[J]. Comm Algebra, 2006,34: 2631-2657.
  • 4Wang S H. Coquasitrigular Hopf.group algebras and Drinfel'd co-doubles[J]. Comm Algebra, 2007 ,35(1): 77-101,.
  • 5Wing S H. New Turaev braided group categories and group Schur-Weyl duality[J]. Appl Categ Struct,2013,21(2) :141-166.
  • 6Caenepeel S, Ion B, Militaru G, et al. Separable functors for the category of Doi- Hopf modules, Applications[J]. Adv Math, 1999,145: 239-290.
  • 7Larson R G, Sweedler M. An associative orthogonal bilinear form for Hopf algebras[J]. Amer J Math,1969,91:75-93.
  • 8Wang S H. A Maschke-type theorem for Hopf rr-comodules[J]. Tsukuba J Math,2004,28:377-388.
  • 9Nastasescu C, van den Bergh M, Van Oystaeyen F. Separable functors applied to graded rings] I], J Algebra, 1989,123: 397-413.
  • 10Braezinski T, Majid S. Coalgebra bundles[J]. Comm Math Phys, 1998, 191 :467-492.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部