期刊文献+

串联机构运动学反解的D-H四元数方法 被引量:7

D-H Quaternion Method for Inverse Kinematics of Serial Mechanisms
下载PDF
导出
摘要 普通四元数方法在串联机构运动学反解时存在方程数量不足和求解困难的问题,为了解决这些问题并建立新的串联机构运动学反解方法,提出串联机构运动学反解的D—H四元数方法。首先给出了包含D—H参数的四元数变换通用方程式,提出将四元数变换方程式分离为位置和姿态两个方程式,这两个方程式可构造出含有7个方程的方程组,使方程数量满足4R以上串联机构运动学反解的要求。为了降低方程组的求解难度,提出了取姿态方程中三角函数的一半组成新的姿态方程,将方程次数降低为原来的一半。采用所提出的D—H四元数方法对PUMA机器人进行运动学反解分析,得到了该机器人的8组反解。根据所求得的8组解,建立了PUMA机器人的8个位姿的三维模型,并测量了PUMA机器人三维模型的末端位姿数值,与所给末端位姿数值完全相同,验证了所提出的D—H四元数方法的正确性和有效性。 The normal quaternion method of inverse kinematics of serial mechanisms has the limitation of lacking equations and is difficult to solve. In order to solve these problems and put forward a new method of inverse kinematics of serial mechanisms, a D - H quaternion method for inverse kinematics of serial mechanisms is proposed. The general equation of quaternion transformation including D - H parameters was given first. Two equations of position and posture were obtained by separating the general equation of quaternion transformation. By these two equations, an equation system with seven equations was constructed, which met the number requirement of the equations for inverse kinematics of serial mechanisms with more than four degrees of freedom. In order to lower the difficulty in solving equations, the degree of posture equation was reduced to half by taking half of the trigonometric function in the original posture equation to construct a new posture equation. By using the proposed D - H quaternion method, the inverse kinematics of PUMA robot was analyzed, and eight groups of inverse solutions were obtained. Three dimensional models of PUMA robot were established based on the eight groups of inverse solutions. Measured results of end positions and postures in the three dimensional models are consistent with the given values. The example of PUMA robot shows the correctness and validity of the proposed D- H quaternion method.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2014年第3期299-304,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(51075039、51375058) 中央高校基本科研业务费专项资金资助项目(2012LD03) 清华大学摩擦学国家重点实验室开放基金资助项目 新世纪优秀人才支持计划资助项目(NCET-12-0796) 高等学校博士学科点专项基金资助项目(20120005110008)
关键词 串联机构 运动学反解 D—H四元数 PUMA机器人 Serial mechanism Inverse kinematics D-H quaternion PUMA robot
  • 相关文献

参考文献17

  • 1廖启征.连杆机构运动学几何代数求解综述[J].北京邮电大学学报,2010,33(4):1-11. 被引量:21
  • 2廖启征 梁崇高 张启先.空间7R机构位移分析的新研究.机械工程学报,1986,22(3):1-9.
  • 3王庆贵.四元数变换及其在空间机构位移分析中的应用[J].力学学报,1983,15(1):54-61.
  • 4肖尚彬.四元数矩阵的乘法及其可易性[J].力学学报,1984,16(2):159-166.
  • 5Qiao S, Liao Q, Wei S, et al. Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions[ J]. Mechanism and Machine Theory, 2010, 45(2) : 193 - 199.
  • 6Gan D, Liao Q, Wei S, et al. Dual quaternion-based inverse kinematics of the general spatial 7R mechanism[ J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222 (8) : 1593 -1598.
  • 7肖尚彬.多刚体开链系统运动的四元数算法[J].固体力学学报,1985,6(4):507-512.
  • 8王庆贵.三种运动学方程的同构关系[J].力学学报,1989,21(1):122-126. 被引量:1
  • 9王庆贵.四元数乘法的结构张量与四元数矩阵的张量表示[J].力学学报,1995,27(6):702-710. 被引量:1
  • 10刘俊峰.三维转动的四元数表述[J].大学物理,2004,23(4):39-43. 被引量:53

二级参考文献91

共引文献104

同被引文献61

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部