期刊文献+

基于机电耦合理论的智能反射面天线形状最优控制 被引量:4

Optimum shape control of intelligent reflector antenna based on structural-electromagnetic coupling theory
下载PDF
导出
摘要 为提高反射面天线电性能,基于机电耦合理论,以增益和第一副瓣为综合控制目标,建立智能反射面天线形状最优控制模型。模型考虑结构强度和作动器性态约束,将作动电压作为被控变量,通过机电耦合模型将电性能表示为作动电压的函数。以某7.3m反射面天线为研究对象,同时考虑自重与温度载荷,分别应用所提方法与传统形状最优控制方法进行控制,其中温度载荷由77个温度传感器实测获取。结果表明,基于机电耦合理论的形状最优控制模型在改善天线的电性能方面更加有效。 To improve the electromagnetic performance of the intelligent reflector antenna, an optimum shape control model is developed based on the structural-electromagnetic coupling theory, which takes the gain and first sideqode levels as a comprehensive objective function. The control model adopts the material strength and the active travel and the passive travel in length of actuators as constraint conditions, and active voltages as controlled variables, and the electromagnetic performance is expressed as a function of controlled voltages through the structural-electromagnetic coupling model. The proposed model and traditional optimum shape con trol model both are applied to a 7.3 m reflector antenna, in which the self-weight and solar radiation are consid ered with 77 temperature sensors to measure temperature. Result shows that the proposed control model is more efficient in improvinlz the electromagnetic performance.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第3期417-421,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(51035006 51205301) 中央高校基本科研业务费专项资金(k5051304009)资助课题
关键词 智能反射面天线 形状最优控制 机电耦合模型 温度测量 intelligent reflector antenna optimum shape control structural-electromagnetic coupling model temperature measurement
  • 相关文献

参考文献10

二级参考文献100

共引文献50

同被引文献36

  • 1卢成静,黄桂平,李广云.数字摄影测量用于天线热变形测量的精度测试[J].测绘通报,2007(7):5-7. 被引量:13
  • 2隋允康,龙连春.智能抛物面天线多目标最优控制[J].计算力学学报,2005,22(6):671-676. 被引量:2
  • 3赵悖殳.电子设备热设计[M].北京:电子工业出版社,2009.
  • 4SAHMAT-SAMII Y. An efficient computation method for characterizing the effects of random surface errors on the average power pattern of reflectors[J]. IEEE Trans. Antennas Propagat., 1983, 31(1): 92-98.
  • 5IMBRIALE W A, GAMA E, SMITH K S. Thermal considerations for hydroformed reflectors[C]//IEEE Aerospace Conference, March 4-11, 2006, Big Sky, Montana, US: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2006: 1-14.
  • 6BREMER M, PENALVER J. FE model based interpretation of telescope temperature variations[J]. Proc. SPIE, 2002, 4757: 186-195.
  • 7GREVE A, BREMER M, PENALVER J, et al. Improvement of the IRAM 30m telescope from temperature measurements and finite-element calculations[J]. IEEE Trans. Antennas Propagat., 2005, AP-53: 851-860.
  • 8GREVE A, BREMER M. Thermal design and thermal behaviour of radio telescopes and their enclosures[M]. Berlin: Springer, 2010.
  • 9XU Shenheng, RAHMAT-SAMII Y, IMBRIALE W A. Subreflectorrays for reflector surface distortion compensation[J]. IEEE Trans. Antennas Propagat., 2009, 57(2).. 364-372.
  • 10WANG Wei, WANG Congsi, DUAN Baoyan, et al. Compensation for gravity deformation via subreflector motion of 65m shaped cassegrain antenna[J]. Microwaves, Antennas and Propagation, 2014, 8(3): 158-164.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部