期刊文献+

控制系统的分数阶建模及分数阶PI^λD^μ控制器设计 被引量:15

Fractional order model for control system and design of fractional order PI^λD^μ controller
下载PDF
导出
摘要 在系统分析与设计过程中,针对高阶动态系统所具有的时滞性,常常利用具有延迟环节的一阶(first order plus time delay,FOPTD)或者二阶系统(second order plus time delay,SOPTD)模型对其进行近似处理,由于建模误差过大影响所描述系统的准确性和控制性能。本文给出了具有延迟环节的新型非整数阶类一阶系统模型(non-integer order plus time delay,NIOPTD),并分别设计了某高阶系统降阶得到的传统模型与新型类一阶系统近似模型,对比分析新型类一阶系统模型的优点与可行性。针对上述3种系统模型(FOPTD、SOPTD、NIOPTD)在频域内给出分数阶PIλDμ控制器新的参数整定方法,通过仿真对比分析得出方法的有效性,并证实分数阶PIλDμ控制器作用于NIOPTD模型具有最好的控制性能和鲁棒稳定性。 For the delay performance of the higher order dynamic system model in the process of system analysis and design, first or second order plus time delay system model are used to make approximations for it, but the described system accuracy and control performance are reduced because of oversize error of the model. A new non-integer order plus time delay (NIOPTD) system model was designed, then the tra- ditional model and the NIOPTD model were received to take the place of a higher order system, and the advantages of the NIOPTD system model were given via comparisons. A new method of fractional order controller parameter tuning in frequency domain was given for the three system models (first order, sec- ond order system and NIOPTD). Simulations results illustrate that the best control performance and robust stability can be performed as desire by utilizing NIOPTD system model.
出处 《电机与控制学报》 EI CSCD 北大核心 2014年第3期85-92,共8页 Electric Machines and Control
基金 国家自然科学基金(61174037) 国家自然科学基金创新研究群体科学基金(61021002) 国家重点基础研究发展计划(973计划)(2012CB821205)
关键词 分数阶微积分 分数阶PI^ΛD^Μ控制器 系统建模 参数整定 性能指标 fractional calculus fractional order PI^λD^μcontroller system modeling parameter tuning performance indicators
  • 相关文献

参考文献17

  • 1赵春娜,李英顺,陆涛.分数阶系统分析与设计[M].北京:国防工业出版社,2011.
  • 2ASTROM K J, HAGGLUND T. PID controller: theory, design and tuning [ M ]. Research Triangle Park : Instrument Society of America, 1995, 237 -241.
  • 3DWYER A O'. Handbook of PI and PID controller tuning rules [M]. London: Imperial College Press, 2006, 113 -116.
  • 4XUE D Y, CHEN Y Q. A comparative introduction of four frac- tional order controllers [ C ]//Proceedings of the 4th World Con- gress on Intelligent Control and Automation, June 10 -14, 2002, Shanghai, China. 2002, 4 : 3228 - 3235.
  • 5PODLUBNY I. Fractional-order systems and PIXD'~controllers [J]. IEEE Transactions on Automatic Control, 1999, 44( 1 ) : 208 -214.
  • 6OUSTALOUP A, MELCHIOR P. Great principles of the CRONE control[ C ]//1993 International Conference on Systems, Man and Cybernetics, October 17-20, 1993, Le Touquet, France. 1993, 2:118-129.
  • 7OUSTALOUP A, BANSARD M. First generation CRONE control [ C 1//1993 International Conference on Systems, Man and Cyber- netics, October 17 - 20, 1993, Le Touquet, France. 1993, 2: 130 - 135.
  • 8OUSTALOUP A, MATHIEU B, LANUSSE P. Second generation CRONE control[ C ~//1993 International Conference on Systems, Man and Cybernetics, October 17- 20, 1993, Le Touquet, France. 1993, 2:136 - 142.
  • 9LANUSSE P, OUSTALOUP A, MATHIEU B. Third generation CRONE control[ C ]//1993 International Conference on Systems, Man and Cybernetics, October 17 -20, 1993, Le Touquet, France. 1993, 2:149-155.
  • 10XUE D Y, CHEN Y Q. Sub-optimum He rational approximations to fractional order linear systems[ C I//ASME 2005 International Design Engineering Technical Conferences and Computers and In-formation in Engineering Conference, September 24 - 28, 2005, Long Beach, United States. 2005 : 1527 - 1536.

二级参考文献30

  • 1RICBARD L. Magin. Fractional calculus in bioengineering[J]. Critical Reviews in Biomedical Engineering, 2004, 32(1): 1 - 193.
  • 2PODLUBNY I. Fractional-order systems and PI^λD^μ-controllers[J]. IEEE Trans on Automatic Control, 1999, 44(1): 208 -214.
  • 3LV Z F. Time-domain simulation and design of siso feedback control systems[D]. Taiwan: National Cheng kung University, 2004.
  • 4CAPONTTO R, FORTUNA L, PORTO D. A new tuning strategy for a non integer order pid controller[C]//IFAC2004, Bordeaux, France: [s.n.], 2004.
  • 5MONJE C A, VINAGRE B M, CHEN Y Q, et al. Proposals for fractional PI^λD^μ tuning[C]//The First IFAC Symposium on Fractional. Bordeaux, France: [s.n], 2004.
  • 6MAC B, HORI Y. Design of fractional order pid controller for robust two-inertia speed control to torque saturation and load inertia variation[C]//IPEMC. Xi'an, China: [s.n.], 2003.
  • 7XUE D Y, CHEN Y Q. A comparative introduction of four fractional order controllers[C]//Proc of the 4th World Congress on Intelligent Control and Automation. Piscataway, NJ, USA: IEEE Press, 2002: 3228 - 3235.
  • 8PODLUBNY I. The Laplace transform method for linear differential equations of the fractional order[J]. Fractional calculus Applied Analysis, 1997: 365- 386.
  • 9PODLUBNY I, DORCAK L, KOSTIAL I. On fractional derivatives, fractional-order dynamic system and PI^λD^μ-controllers[C]//Proc of the 36th IEEE CDC. San Diego: Is.n.J. 1999.
  • 10PODLUBNY I. Fractional-order systems and fractional-order controllers[C]//UEF-03-94 The Academy of Sciences Institute of Experimental Physics. Kosice: [s.n.], 1994.

共引文献173

同被引文献94

引证文献15

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部