期刊文献+

低重环境下俯仰运动圆柱贮箱内液体晃动 被引量:7

LOW-GRAVITY LIQUID SLOSHING IN CYLINDRICAL TANKS UNDER PITCHING EXCITATION
下载PDF
导出
摘要 考虑低重环境下由于表面张力的影响使得圆柱贮箱内液体呈现弯曲自由液面的情况,以俯仰激励下液体晃动的占优模态振型函数为晃动速度势的基函数,利用傅里叶--贝塞尔级数对贮箱受俯仰激励时的自由液面处的运动边界条件进行展开,得到能描述晃动系统本质的广义状态方程,并分别给出了固有频率、晃动波高、晃动力和晃动力矩等晃动特征的计算方法.通过具体算例得到了俯仰激励下贮箱内液体晃动特征的动态响应,同时验证了文中方法的收敛性、可行性和正确性. The curved free surface of liquid in a cylindrical tank caused by surface tension under low-gravity environment is considered. The dominant modal vibration function of liquid sloshing under pitching excitation.is selected as the basic function of velocity potential. The generalized state equation of liquid sloshing system is introduced by expanding the lateral sloshing boundary condition of the free surface to a Fourier-Bessel series, and the formulas of sloshing characteristics including wave height, sloshing frequencies, sloshing force and sloshing moment are also deduced, respectively. Through numerical calculation, the dynamic responses of sloshing characteristics are studied when the tank under pitching excitation. And the convergence, applicability and correctness of the present algorithm are validated.
出处 《力学学报》 EI CSCD 北大核心 2014年第2期284-290,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(10772030)~~
关键词 低重环境 圆柱贮箱 弯曲自由液面 俯仰激励 傅里叶-贝塞尔级数 广义状态方程 low-gravity environment, cylindrical tank, curved free surface, pitching excitation, Fourier-Bessel series, generalized state equations
  • 相关文献

参考文献20

  • 1Leon JH, Reginald R. Low gravity liquid-vapor interface shapes in axisymmetric containers and a computer solution. NASA TMX- 53790, 1968.
  • 2Neu JT, Robert JG. Equilibrium behavior of fluids in containers at zero gravity. A1AA Journal, 1963, 1(4):814-819.
  • 3Roel L, Joop A, Arthur E, et al. Liquid sloshing in microgravity. In: Proc. of 56th International Astronautical Congress 2005, Fukuoka, 17-21 October 2005.
  • 4Michael V, Garry L, Daniel K, et al. Experimental and numerical investigation of reduced gravity fluid slosh dynamics. AIAA Paper 2008-4667, 2008.
  • 5Brandon M, Sathya G, Yadira C. Using CFD techniques to predict slosh force frequency and damping rate. AIAA Paper 2009-2683, 2009.
  • 6Brando M, David G, Paul S, et al. Integrated CFD and controls anal- ysis interface for high accuracy liquid propellant slosh predictions. AIAA Paper 2012-038, 2012.
  • 7Lazzarin M, Biolo M. EUCLID mission: Theoretical sloshing model and CFD comparison. AIAA Paper 2012-4296, 2012.
  • 8Dodge FF, Garza LR. Experimental and theoretical studies of liquid sloshing at simulated low gravities. NASA NAS8-20290, 1966.
  • 9Dodge F T, Garza L R. Experimental and theoretical studies of liq- uid sloshing at simulated low gravity. Journal of Applied Mechanics, 1967, 34(9): 555-562.
  • 10Utsumi M. Low-Gravity propellant slosh analysis using spherical coordinates. Journal of Fluids and Structures, 1998, 12(1): 57-83.

二级参考文献235

共引文献69

同被引文献66

  • 1周宏,李俊峰,王天舒.低重环境航天器贮箱内三维液体晃动数值模拟[J].清华大学学报(自然科学版),2005,45(5):658-661. 被引量:7
  • 2Marthinus C S. The coupled nonlinear dynamics of spacecraft with fluids in tanks of arbitrary geometry [ D ]. Cambridge:Massachusetts Institute of Technology, 1989.
  • 3Peterson L D, Crawley E F, Hansman R J. Nonlinear fluid slosh coupled to the dynamics of spacecraft [ J]. AIAA Journal, 1989, 27(9) :1230 - 1240.
  • 4Hung R J, Long Y T, Chi Y M. Slosh dynamics coupled witb spacecraft attitude dynamics part I: formulation and theory [ J]. Journal of Spacecraft and Rockets, 1996, 33(4) : 575 -581.
  • 5Hung R J, Long Y T, Chi Y M. Slosh dynamics coupled with spacecraft attitude dynamics part 2: orbital environment application [J]. Journal of Spacecraft and Rockets, 1996, 33 (4) : 582 -593.
  • 6Yue B Z. Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft [ J]. AIAA Journal, 2011. 49 (10) : 2090 -2099.
  • 7Shageer H, Tao G. Zero dynamics analysis for spacecraft with fuel slosh [ C ]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, August 18 -21,2008.
  • 8Sabri F, Lakis A A. Effects of sloshing on flutter prediction of partially liquid-filled circular cylindrical shell [ J ]. Journal of Aircraft, 2011, 48(6) :1829 - 1839.
  • 9Kang J Y, Lee S. Attitude acquisition of a satellite with a partially filled liquid tank [ J]. Journal of Guidance, Control and Dynamics, 2008, 31(3):790-793.
  • 10Paul M, Scott R S. The effects of propellant slosh dynamics on the solar dynamics observatory [ C ]. AIAA Guidance, Navigation, and Control Conference, Oregon, August 08 - 11, 2011.

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部