期刊文献+

延迟容忍及冲突避免的水声网络S-Aloha协议 被引量:3

Delay tolerant and collision avoidance S-Aloha protocol for underwater acoustic networks
下载PDF
导出
摘要 在S-Aloha协议的基础上,针对水声信道传播延时高的特点,设计了一种适合于水声网络的DTCAS-Aloha协议。该协议中,发送节点首先根据传播延时调整开始发送数据包的时刻,使数据包第1个比特到达目的节点的时刻与时隙同步。同时,节点通过提取侦听到数据包的信息和传播延时获取周围邻节点的忙时间和相应的忙状态,从而判断本节点即将发送的数据包或ACK在任意节点处是否会发生碰撞,达到避免冲突和提高吞吐量的目的。仿真结果表明,与原始S-Aloha协议相比,DTCASAloha协议在集中式单跳网络和分布式多跳网络中均具有较高的吞吐量和较低的冲突率。 On the basis of S-Aloha protocol,aiming at the long propagation delay characteristic in underwater channel,a new protocol called DTCAS-Aloha is proposed,which is suitable for underwater acoustic networks.The first key point is that the DTCAS-Aloha adjusts the data frame transmission time according to the propagation delay to align the arrival time of the first bit of the data frames with the start of slots.Moreover,DTCAS-Aloha takes advantage of the propagation delay and the information extracted from overheard frames to calculate the busy duration of every neighboring node,along with the indications of whether these busy states are caused by transmitting or receiving.When a node has data to transmit,it should check whether the data frame or the ACK frame will result in a collision at any node.The DTCAS-Aloha can avoid collisions and boost the throughput.The simulation results show that the throughput of DTCAS-Aloha is higher than that of S-Aloha and the collision ratio of DTCAS-Aloha is lower than that of S-Aloha in both centralized single-hop network and distributed multi-hop network.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第3期513-519,共7页 Chinese Journal of Scientific Instrument
基金 国家863计划(2009AA093601) 国家自然科学基金(10904160)资助项目
关键词 水声网络 S-Aloha协议 延迟容忍 冲突避免 忙时间 underwater acoustic network S-Aloha protocol delay tolerant collision avoidance busy duration
  • 相关文献

参考文献17

  • 1Nan Jing,Weihong Bi,Qing Yue.Attack Simulation Model and Channel Statistics in Underwater Acoustic Sensor Networks[J].Tsinghua Science and Technology,2011,16(6):611-621. 被引量:2
  • 2XUJ F .u K Q , MIN C Y. Asymmetric multi-path division communications in underwater acoustic networks with fading channels Original Research Article[J].Journal of Computer and System Sciences, 2013, 79 (2) : 269-278.
  • 3支绍龙,袁兆凯,李宇,尹力,黄海宁.一种小型化水声信号调制发射系统[J].仪器仪表学报,2012,33(7):1668-1675. 被引量:17
  • 4YUN NY, SHIN S W ,MUMINOV S, et al. Environmental impact analysis to design an adaptive MAC protocol for underwater vehicle control system based on underwater acoustic channel estimation[C] . OCEANS, Yeosu , 2012: 1-7.
  • 5WANG C, uu G L . LUM-HEED: A location unaware, multi-hop routing protocol for underwater acoustic sensor networks[C]. Computer Science and Network Technology, Harbin, 2011: 2336-2340.
  • 6STEF ANOV A, STOJANOVIC M. Design and performance analysis of underwater acoustic networks[J] . Selected Areas in Communications, 2011, 29 ( 10) : 2012 - 2021.
  • 7HEIDEMANNJ, WEI Y, WILLSJ, et aL Research challenges and applications for underwater sensor networking[C]. Wireless Communications and Networking Conference, Las Vegas, 2006: 228-235.
  • 8侯维岩,刘伟春,程俊锋,费敏锐.面向无线工业网络的数据链路层协议WICN-Z[J].仪器仪表学报,2008,29(3):638-643. 被引量:12
  • 9曾桂根,洪杰,郑宝玉.基于VoWLAN的MAC层接入算法的改进[J].仪器仪表学报,2011,32(7):1660-1668. 被引量:5
  • 10CHIRDCHOO N, SOH W S, CHUA K C. MACA- MN: A MACA-based MAC protocol for underwater acoustic networks with packet train for multiple neighbors[C]. Vehicular Technology Conference, Singapore, 2008: 46-50.

二级参考文献61

  • 1符青云,刘心松,皮建勇.802.11b无线网络环境下视频会议系统的流量特性研究[J].电子测量与仪器学报,2006,20(6):54-58. 被引量:4
  • 2崔旭涛,杨日杰,何友.基于DSP+FPGA的信号处理实验系统研制[J].仪器仪表学报,2007,28(5):918-922. 被引量:36
  • 3黄志昊,李珊君.IEEE 802.11e EDCA在CFB模式下的性能分析[J].电子测量技术,2007,30(5):133-135. 被引量:3
  • 4Akyildiz I, Pompili D, Melodia T. Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 2005, 3(3): 257-279.
  • 5Chitre M S, Shahabodeen S, Stojanovic M. Underwater acoustic communications and networking: Recent ad- vances and future challenges. Marine Technology Society, 2008, 42(1): 103-116.
  • 6Singer A C, Nelson J K, Kozat S S. Signal processing for underwater acoustic communications. 1EEE Communica- tions Magazine, 2009, 47(1): 90-96.
  • 7Hwang T, Yang Chenyang, Wu Gang, et al. OFDM and its wireless applications: A survey. IEEE Transactions on Ve- hicular Technology, 2009, 58(4): 1673-1694.
  • 8Li Baosheng, Huang Jie, Zhou Shengli, et al. MIMO- OFDM for high rate underwater acoustic communications. IEEE Journal of Oceanic 634-645.
  • 9Stojanovic M. Underwater acoustic communications: De- sign considerations on the physical layer. In: Proceedings of the IEEE/IFIP WONS'08. Gannisch-Partenkirchen, Germany, 2008: 1-10.
  • 10Stojanovic M, Presig J. Underwater acoustic communica- tion channels: Propagation models and statistical charac- terization. 1EEE Communications Magazine, 2009, 47(1): 84-89.

共引文献31

同被引文献10

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部