期刊文献+

基于SLIC0融合纹理信息的超像素分割方法 被引量:13

SLIC0-based superpixel segmentation method with texture fusion
下载PDF
导出
摘要 由于SLIC0算法在分割时仅考虑图像的颜色、亮度、空间位置特征,没有考虑纹理特征,当分割具有繁杂纹理的自然图像时,其分割的超像素无法精准地符合区域或目标的边界或外轮廓,因此提出基于SLIC0融合纹理信息的超像素分割算法——SLIC0-t。首先利用光谱分析描述图像中区域的纹理特性,然后在分割中融合能够准确反映图像中目标轮廓或区域边界的纹理特征;其次在分割过程中,进一步优化SLIC0围绕种子像素搜索近邻像素的搜索策略,采用以各个种子点为中心,在以预期超像素邻接距离为半径的圆盘内搜索的搜索策略;最后通过在公共图像库BSDS500上进行连续不同大小超像素的分割实验验证,结果表明:在边界召回率方面,SLIC0-t算法明显稳定优越于SLIC0算法;在欠分割错误率方面,其与SLIC0算法基本相当,处于可接受范围内。 SLIC0 (the simple linear iterative clustering (SLIC) version with 0 parameter) algorithm only considers color,brightness and space features,but no texture feature; when the natural image with clutter texture scenario is segmented,the superpixels segmented with SLIC0 do not accurately coincident with the boundaries of the areas or the contours of the objects.In order to solve this problem,this paper presents the SLIC0-t algorithm based on the SLIC0 with texture feature fusion.First,the area texture in the image is described with spectrum analysis,and then in the segmentation the texture features that are able to accurately reflect the contour of the objects or the area boundaries are fused.And in the process of segmentation,the search strategy of SLIC0 searching for the neighbor pixels around the seed pixel is further optimized.The search strategy is adopted,which performs the searching in the scope of a disk that takes the seed point as the center and the expected adjacency superpixel distance as the radius.Finally,the segmentation experiment verification for continuous superpixels with different sizes on the BSDS500 public image data sets was conducted.The results show that the proposed SLIC0-t algorithm is significantly superior to SLIC0 algorithm in the boundary recall rate,and has almost the same undersegmentation error rate as SLIC0 algorithm,which is in the acceptable range.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第3期527-534,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61170116)资助项目
关键词 超像素 纹理特征 超像素分割 SLIC0 superpixel texture feature superpixel segmentation SLIC0
  • 相关文献

参考文献24

  • 1FELAENSZW ALB P , HUTIENLOCHER D. Efficient graph-based image segmentation[J]. InternationalJournal of Computer Vision, 2004, 59 ( 2) : 167 -181.
  • 2MOORE A , PRINCE S. Superpixel lattices[C]. IEEE Conference on Computer Vision and Pattern Recognization ,2008: 1-8.
  • 3VEDALDI A, SOA TIO S. Quick shift and kernel methods for mode seeking[C]. European Conference on Computer Vision, Springer Berlin Heidelberg, 2008 : 705-718.
  • 4LEVINSHTEIN A, STERE A, KUTULAKOV K , et al. Turbopixels , Fast superpixels using geometric flows[J] . IEEE Transactions onpattern anallysis and Machineintelligence , 2009, 31 (12) : 2290-2297.
  • 5VEKSLER 0 , BOYKOW Y, MEHRANI P. Superpixels and supervoxels in an energy optimization framework[C] . European Conference on Computer Vision, 2010.
  • 6ACHANTA R, SHAH A. Slic superpixels[J]. Ecolef'olytechnique Federal de Lausssanne (EPFL), Tech. Rep, 2010,149300.
  • 7ACHANTA R, SHAH A. SLIC superpixels comparedto state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis Andmachine INtellgence, 2012,34 ( 11 ) :2274-2282.
  • 8LUCCHI A, SMITH K, ACHANTA R, et al. A fully automated approach to segmentation of irregularly shaped cellular structures in EM images[M]. Medical Image Computing and Computer-Assisted Intervention. Springer Berlin Heidelberg, 2010: 463 471.
  • 9LUCCHI A, SMITH K. Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features[J]. IEEE Transactions on Medical Imaging, 2012, 31 (2): 474486.
  • 10WAN G S, LU H. Superpixel tracking[C]. IEEE International Conference on Computer Vision, 2011 : 1323-1330.

二级参考文献73

  • 1张春华,刘纪元.第二讲 合成孔径声纳成像及其研究进展[J].物理,2006,35(5):408-413. 被引量:28
  • 2MANIKANDAN J, VENKATARAMANI B. Study and evaluation of a multi-class SVM classifier using dimin- ishing learning technique [ J]. Neurocomputing, 2010, 73(10-12) :1676- 1685.
  • 3Lowe D G. Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 1150-1157.
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 5Mikolajczyk K, Matas J. Improving descriptors for fast tree matching by optimal linear projection. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8.
  • 6Klare B, Li Z F, Jain A K. Matching forensic sketches to mug shot photos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 639-646.
  • 7Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 8Huang C R, Chen C S, Chung P C. Contrast context histogram — an efficient discriminating local descriptor for object recognition and image matching. Pattern Recognition, 2008, 41(10): 3071-3077.
  • 9Tola E, Lepetit V, Fua P. DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830.
  • 10Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2004. 506-513.

共引文献84

同被引文献76

  • 1冯祖仁,吕娜,李良福.基于最大后验概率的图像匹配相似性指标研究[J].自动化学报,2007,33(1):1-8. 被引量:22
  • 2ZHANG Junying,FAN Xiuju,DONG Jiyang,SHI Meihong.Image Segmentation Based on Modified Pulse-Coupled Neural Networks[J].Chinese Journal of Electronics,2007,16(1):119-122. 被引量:6
  • 3李智磊,翟宏琛,王明伟.一种可识别破碎图形的特殊广义Hough变换方法[J].物理学报,2007,56(6):3234-3239. 被引量:15
  • 4Ren X,Malik J.Learning a Classification Model for Segmentation[C]//Proceedings of ICCV’03.Nice,France:[s.n.],2003:10-17.
  • 5Shi J,Malik J.Normalized Cuts and Image Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 6Comaniciu D,Meer P.Mean Shift:A Robust Approach Toward Feature Space Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 7Levinshtein A,Stere A,Kutulakos K,et al.Turbopixels:Fast Superpixels Using Geometric Flows[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(12):2290-2297.
  • 8Shotton J,Sharp T,Kipman A,et al.Real-time Human Pose Recognition in Parts from Single Depth Images[J].Communications of the ACM,2013,56(1):116-124.
  • 9Mori G.Guiding Model Search Using Segmentation[C]//Proceedings of ICCV’05.Beijing,China:[s.n.],2005:1417-1423.
  • 10Achanta R,Shaji A,Smith K.SLIC Superpixels Compared to State-of-the-art Superpixel Methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2281.

引证文献13

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部