期刊文献+

MCNP模拟月表关键性元素γ射线与实测结果比较分析 被引量:4

Monte Carlo Simulation and Analysis of γ Rays for the Important Elements of Lunar Surface
原文传递
导出
摘要 嫦娥一号携带的γ射线谱仪传回大量能谱数据,对其分析与解谱是一个比较复杂的过程。针对此问题,提出按照月表γ射线来源的物理过程,分为月球表面天然放射元素、中子非弹性散射和中子俘获三部分。用MCNP程序模拟其在GRS中的能谱数据,将模拟结果叠加并与实测谱线对比,结果表明,模拟γ谱线能帮助辨识出实测谱线中的部分关键元素,例如^(40)K、^(214)Bi等。 It is a more complex data processing problem of the data of γ-ray spectrum, which were collected by Chang'E-1 from lunar surface. It is presented that MCNP simulation for the 7 spectra, according to three kinds of physical events, such as natural radioactive elements emission, the 7 rays induced by inelastic neutron scattering and neutron capture on the lunar surface in this paper. The simulated results were superimposed and compared with the measured spectrum by Chang'E-1. The results show that 40K and 214Bi can be identified from the measured data with our MCNP models.
出处 《原子核物理评论》 CAS CSCD 北大核心 2014年第1期112-117,共6页 Nuclear Physics Review
关键词 月球探测 CE1-GRS MCNP detection of the moon CE1-GRS MCNP
  • 相关文献

参考文献1

二级参考文献16

  • 1Chang Jin, Ma Tao, Zhang Nan, Cai Mingsheng, Gong Yizhong, Tang Hesen, Zou Yongliao, Liu Jianzhong and Xu Aoao, 2009. Gamma-ray detector on board lunar mission Chang'e-1. Journal of the Physical Society of Japan, 78: 262-268.
  • 2Korotev, R.L., 1999. A new estimate of the composition of the feldspathic upper crust of the Moon. Proc. Lunar Planet. Sci. Conf., 30th, 1303.
  • 3Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Binder, A. B., Elphic, R.C., Maurice, S., and Thomsen, D.R., 1998. Global elemental maps of the Moon: the Lunar Prospector Gamma-ray Spectrometer. Science, 284(5382): 1484-1489.
  • 4Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Binder, A. B., Elphic, R.C., Maurice, S., Miller, M.C., and Prettyman, T. H., 2000. Thorium abundances on the lunar surface. Journal of Geophysical Research, 105(E8): 20307-20331.
  • 5Lawrence, D.J., Maurice, S., and Feldman, W.C., 2004. Gammaray measurements from Lunar Prospector: Time series data reduction for the Gamma-ray Spectrometer. Journal of Geophysical Research, 109(E07): 1-23.
  • 6Ma Tao, Chang Jin, Zhang Nan Cai Mingsheng, Gong Yizhong, Tang Hesen, Zou Yongliao, Liu Jianzhong and Xu Aoao, 2008. Gamma-ray detector on board ltmar mission Chang'E-l. Advances in Space Research, 42(2): 347-349.
  • 7Metzger, A.E., Trombka, J.I., Reedy, R.C., and Arnold, J.R., 1974. Element concentrations from lunar orbital gamma ray measurements. Proc. Lunar Planet. Sci. Conf., 5th, 10671- 10678.
  • 8Metzger, A.E., Haines, E.L., Parker, R.E., and Radocinski, R.G.., 1977. Thorium concentrations in the lunar surface: I. Regional values and crustal content. Proc. Lunar Planet. Sci. Conf., 8th, 949-977.
  • 9Metzger, A.E., Haines, E.L., Etchegaray-Ramirez, M.I., andHawke, B.R., 1979. Thorittm concentrations in the lunar surface: III. Deconvolution of the Apennius region. Proc. Lunar Planet. Sci. Conf., lOth, 1701-1718.
  • 10Metzger, A.E., Etchegaray-Ramirez, M.I., Haines, E.L., and Hawke, B.R., 1981.Thorium concentrations in the lunar surface: V. Deconvolution of the central highlands region. Proc. Lunar Planet. Sci. Conf., 12th, 751-766.

共引文献5

同被引文献32

  • 1李泳泉,刘建忠,欧阳自远,李春来,邹永廖.月球表面岩石类型的分布特征:基于Lunar Prospector (LP)伽马射线谱仪探测数据的反演[J].岩石学报,2007,23(5):1169-1174. 被引量:14
  • 2Hasebe N, Yamashita N, Okudaira O, et al. The high precision gamma-ray spectrometer for lunar polar orbiter SELENE[J]. Advances in Space Research, 2008, 42: 323-330. DOI: 10.1016/J.ASR.2007.05.046.
  • 3Reedy R. Predicting the production rates of cosmogenic nuclides[J]. Nuclear Instruments and Methods in Physics Research, 2000, B172: 782-785. DOI: 10.1016/ S0168-583X(00)00107-5.
  • 4Leya I, Michel R. Cross sections for neutron-induced reactions up to 1.6 GeV for target elements relevant for cosmochemical, geochemical, and technological applications[J]. Nuclear Instruments and Methods in Physics Research, 2011, B269: 2487-2503. DOI: 10.1016/J.NIMB.2011.07.011.
  • 5Lee D C, Halliday A N, Leya I, et al. Cosmogenic tungsten and the origin and earliest differentiation of the Moon[J]. Earth and Planetary Science Letters, 2002, 198: 267-274. DOI: 10.1016/S0012-821X(02)00533-2.
  • 6Ota S, Sihver L, Kobayashi S, et aL Depth dependency of neutron density produced by cosmic rays in the lunar subsurface[J]. Advances in Space Research, 2014, 54: 2114-2121. DOI: 10.1016/J.ASR.2014.02.002.
  • 7Wieler R. The solar noble gas record in lunar samples and meteorites[J]. Space Science Reviews, 1998, 85:303-314 DOI: 10.1023/A: 1005166904225.
  • 8Binns R. Cosmic-ray origins[J]. Science, 2011, 334: 1071-1072. DOI: 10.1126/science,1213490.
  • 9Reedy R, Arnold J, Lal D. Cosmic-ray record in solar system matter[J]. Science, 1983, 219: 127-135. DOI: 10.1126/science.219.4581.127.
  • 10Sonett P. The sun in time[M]. Tucson: Arizona State University Press, 1991: 990.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部