期刊文献+

一类离散反馈型时滞细胞神经网络模型及其数值模拟

A Class of Discrete-feedback Delayed Cellular Neural Network Model and its Numerical Simulation
原文传递
导出
摘要 细胞神经网络是一个大规模非线性系统,具有高速并行计算且易于硬件实现等特点,已被广泛应用于模式识别,图像处理等领域。本文基于时滞方程和反馈控制,对离散反馈型细胞神经网络进行设计,给出了满足相应功能的模板及其动力学分析,提出了一类离散反馈型时滞细胞神经网络,并借助模拟平台Matlab 7.0对基础的随机布朗运动进行了初步的数值模拟,数值模拟结果充分显示了布朗运动的随机性,证实了理论分析的有效性。该模型经过一定时间后能对粒子的随机状态作出反馈,可用于模拟二维平面上的随机行走。 Cellular neural network is a large-scale nonlinear system, which has the advantages of high-speed computation and easily adapting hardware to realize, and which was applied to image processing and pattern recognition. Based on the time delay differential equations and feedhack control, this paper designed a class of discrete feedback cellular neural networks, given the corresponding function template and its dynamics analysis, proposed a class of discrete feedback delayed cellular neural networks. With the help of simulation platform Matlab 7.0, this paper conducted a preliminary numerical simulation. The simulation results show the random of Brownian motion fully confirmed the validity of the theoretical analysis. The model can make particles random state feedback after certain time and can be used to simulate the random walk of the two-dimensional plane, which has important significance for the de- velopment of CNN and relevant subjects.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期47-50,共4页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.51076012)
关键词 随机行走 细胞神经网络 离散反馈型时滞细胞神经网络 random walk cellular neural network discrete-feedback delayed cellular neural network
  • 相关文献

参考文献9

  • 1Chua L 0, Yang L. Cellular neural networks: theory[J]. IEEE Trans Circuits Syst,1988,35(10):1257-1272.
  • 2Chua L 0, Yang L. Cellular neural networks: applications[J]. IEEE Trans Circuits Syst , 1988,35(10) : 1273-1290.
  • 3Cai H, Min L Q. Discrete-feedback cellular neural network and its applications[J]. International Conference on Communications Circuit and Systems,2005(2) :944-968.
  • 4胡品慧.时滞系统预测控制研究[C]//程代展,王行愚.第二十三届中国控制会议论文集(上册).上海:华东理工大学出版社,2004:129-131.
  • 5Harrer H, Nossek J A. Discrete-time cellular neural networks[J]. Int J of Circuit Theory and Applications, 1992, 20(5) :453-467.
  • 6Roska T, Chua L 0. CNNs with nonlinear and delay-type template elements and non-uniform grids[J]. International Journal of Circuit and Applications,1992.20(5) :469-481.
  • 7Provata A, Turner J W, Nicolis G. Nonlinear chemical dynamics in low dimensions: an exactly soluble model[J]. J State Phys .1993.70 (5/6) : 1195-1201.
  • 8Tretyakov Av Provata AvNicolis G. Nonlinear chemical dynamics in low-dimensinallattices and fractal sets[J]. J Phys Chern, 1995,99(9) : 2770-2780.
  • 9苏永美,闵乐泉,卓新建.逻辑非兼平移CNN的鲁棒性设计[J].工程数学学报,2006,23(2):247-253. 被引量:1

二级参考文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部