期刊文献+

与Virasoro代数有关的李代数L的结果

Structures of the Lie Algebra L Related to Virasoro Algebra
下载PDF
导出
摘要 利用李代数L=m∈Z(CLmCEm)包含无中心的Virasoro代数(Witt代数)作为李代数L的子代数,研究L的导子和中心扩张等问题.结果表明L是一个无限维的Complete李代数并且L的泛中心扩张在Leibniz代数范畴与李代数范畴是相同的. Derivations and universal central extensions of the Lie algebra L were studied using the Lie algebra where L = +m∈Z(CLm + CEm) which contains the centerless Virasoro algebra (Witt algebra) as a subalgebra. It is proved that L is a complete infinite-dimensional Lie algebra and the universal central extension of L in the category of Leibniz algebras is the same as that in the category of Lie algebras.
作者 陈雪 黄智力
出处 《厦门理工学院学报》 2014年第1期91-96,共6页 Journal of Xiamen University of Technology
基金 国家自然科学基金项目(11371024)
关键词 导子 中心扩张 LEIBNIZ代数 derivation central extension Leibniz algebra
  • 相关文献

参考文献10

  • 1GAO S, JIANG C, PEI Y. Structure of the extended SchrSdinger-Virasoro Lie algebra [ J ]. Algebra Colloq, 2009, 16(4) : 549-568.
  • 2ZHANG X, TAN S. Whittaker modules and a class of new modules similar as Whittaker modules for the Sehrtodinger- Virasoro algebra [ J/OL]. Mathematical Physics, 2009, arxiv: 0812. 3245:1-31 [ 2009-10-14 ]. http://arxiv-web3. library, cornell, edu/PDF/0812. 3245V2. PDF.
  • 3SI-IEN R, JIANG C. The derivation algebra and automorphism group of the twisted Heisenberg - Virasoro algebra [ J ]. Commun Algebra, 2006, 34(7) : 2547-2558.
  • 4JIANG Q F, JIANG C P. Representations of the twisted Heisenberg-Virasoro algebra and the full toroidal Lie algebras [J]. AlgebraColloq, 2007, 14(1):117-134.
  • 5ZHANG W, DONG C. W-Algebra W (2, 2) and the vertex operator algebraL(1/2,0) QL(1/2,0) [J]. Comm Math Phys, 2009, 285: 991-1004.
  • 6FARNSTEINER R. Derivations and extensions of finitely generated graded Lie algebras [J]. J Algebra, 1988, 118( 1 ) : 34-45.
  • 7GARLAND H. The arithmetic theory of loop groups [J]. Publ Math IHES, 1980, 52: 5-136.
  • 8BENKART M G, MOODY V R. Derivations, central extensions and affine Lie algebras [ J ]. Algebras Groups Geom. , 1986, 3(4): 456-492.
  • 9LODAY L J, PIRASHVILI T. Universal enveloping algebras of Leibniz algebras and (co) -homology [ J ]. Math Ann, 1993, 296: 138-158.
  • 10HU N, PEI Y, LIU D. A cohomological characterization of Leibniz central extensions of Liealgebras [ J ]. Proc Amer Math Soc, 2008, 136(2) : 437-447.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部