期刊文献+

一种具有自动聚类检测功能的欠定型盲信号混叠矩阵估计算法

A New Matrix Clustering Algorithm with Auto Detection for Underdetermined Sparse Component Analysis
下载PDF
导出
摘要 针对源信号个数未知情况下的欠定稀疏分量分析模型,提出一种具有自动聚类检测功能的混叠矩阵估计算法。提出实现源信号个数的判定的观测信号自动检测聚类方法,同时利用主成分分析对超直线进行估计,从而实现混叠矩阵的精确估计。仿真实验结果表明,该算法适用范围广,是一种快速精确且稳健的混叠矩阵估计算法。 To the underdetermined sparse component analysis (SCA) model with unknown sources number, a new robust clustering algorithm with auto detect function for mixture matrix estimation is addressed. This approach consists of two parts: signal clustering and mixing matrix estimation. In the first step, a probability criterion is pro- posed for sources number detection, which stems from deduction by using a fit mathematical statistics model. To the second stage, principal component analysis (PCA) is introduced to the mixing matrix estimation. Experiment simu- lations illustrate the effectiveness of the new clustering algorithm.
作者 余莎丽
出处 《科学技术与工程》 北大核心 2014年第3期170-174,共5页 Science Technology and Engineering
基金 广东省自然科学基金(S2012010009675)资助
关键词 稀疏分量分析 源信号正交性假设 噪声 sparse component analysis (SCA) orthogonal condition of sources noise
  • 相关文献

参考文献10

  • 1Tipping M E, Bishop C M. Probabilistic principal component analy- sis. J Roy Statist Soc Ser B,1999; 63:611-622.
  • 2Zibulevsky M, Pearlmutter B A. Blind source separation by sparse decomposition in a signal dictionary. Neural Comput, 2001 ; 13 (4) : 863-882.
  • 3Naini F M, Mohimani G H, Babaie-Zedeh M, et al. Estimating the mixing matrix in Sparse Component Analysis (SCA) based on partial k-dimensional subspace clustering . Neurocomputing, 2008 ; 71 : 2330-2343.
  • 4Seghouane A K, Cichocki A. Baysian estimation of the number of principal components. Signal Processing,2007 ;87 : 562-568.
  • 5Comon P. Independent component analysis, a new concept. Signal Processing, 1994 ;36(3) :287-314.
  • 6Herault J, Jutten C. Blind separation of sources, part I : an adaptive al- gorithm based on neuromimetic. Signal Processing, 1991 ; 24 ( 1 ) : 1-10.
  • 7付宁,乔立岩,彭喜元.基于改进K-means聚类和霍夫变换的稀疏源混合矩阵盲估计算法[J].电子学报,2009,37(B04):92-96. 被引量:17
  • 8He Zhaoshui, Cjchocki A, Li Yuanqi. K-hyperline clustering learning for sparse component analysis. Signal processing 2009 ; 89 : 1011-1022.
  • 9Puntonet C, Mansour A, Jutten C. A geometrical algorithm for blind separation of sources. Actes du XVe'me Colloque GRETSI 95, Juan- Les-Pins, France, 1995:273-276.
  • 10Makino S, Lee Te-won, Sawada H. Blind Speech Separation. Spring- er. New York:2007:217-241.

二级参考文献1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部