摘要
Minkowski和的边界值是实现位置空间障碍物的关键技术,为改进算法的运行和求和速度,采用凹多面体回路的近似精确算法设计。首先指出了传统多面体算法的不足,进行完成了改进算法的设计及分析。实验验证采用了凸四面体、凹九面体顶点坐标,在给出了详细的实验过程后得出:相比旧算法设计的改进算法执行时间较短,未出现新的顶点,实现了凹多面体的近似精确Minkowski和多面体边界表示,执行时间对比进一步验证了效率的改进。这一研究对于三维虚拟实验室和三维模型数据传输技术的改进具有一定的意义。
Minkowski and the spatial location of the boundary value is to achieve key technical obstacles, it is running and summation algorithm speed, using concave polyhedral loop approximation exact algorithm design. First the deficiencies is pointed out of the traditional polyhedron algorithm for the completion of the improved algorithm design and analysis. Experimental verification using a convex tetrahedron, nine-sided concave vertex coordinates, given in detail in the experimental process come: algorithm design improvements compared to the old algorithm exe- cution time is shorter, no new vertices to achieve a concave polyhedron Minkowski and polyhedral approximation precise boundary representation. The execution time compared to further verify the efficiency improvements. For this study three-dimensional and three-dimensional model of a virtual laboratory technology improves data transmis- sion has a certain significance.
出处
《科学技术与工程》
北大核心
2014年第3期204-207,共4页
Science Technology and Engineering