期刊文献+

基于半监督学习的双线性映射图像检索 被引量:3

An Image Retrieval Method of Double Linear Mapping Based on Semi-supervised Learning
下载PDF
导出
摘要 "语义鸿沟"是基于内容图像检索中广泛存在的问题。近年来,人们为减小语义鸿沟开展了许多研究工作,并将半监督学习方法用于其中。目前,多数的检索方法只考虑数据点的结构信息,或关注点集中在低层特征。为了充分利用结构信息缩小低层特征和高层语义之间的语义鸿沟,提出了一种半监督的双映射机器学习图像检索法。该方法在低层特征与标签之间建立双线性映射,最后使用Corel图像库同流行嵌入法进行对比,实验表明所提出的方法在检索过程中可以获得较好的效果,精准率有明显提高。 "Semantic gap" is a widespread problem of content-based image retrieval. In order to reduce the se- mantic gap a lot of research work has been carried out in recent years, and will semi-supervised learning is applied to the field of image retrival. Current research on content-based image the data points' structure information is con- sideed merely or low-level features is paid close attention only. To make full use of the structure information and fill the semantic gap between low-level features and high- level semantics, a new image retrieval method is introduced, which is based on semi-supervised machine learning and linear mapping. This method is established double bilinear mapping between low-level features and labels. The method is compared it against the Flexible Manifold Embedding and a significant improvement in terms of accuracy and stability is shown based on a subset of the Corel image gallery.
出处 《科学技术与工程》 北大核心 2014年第4期255-259,共5页 Science Technology and Engineering
基金 国家科技支撑计划基金(2013BAH45F02) 国家自然科学基金(61379080)资助
关键词 基于内容的图像检索(content based image RETRIEVAL CBIR) 半监督学习 双层映射 语义鸿沟 content based image retrieval(CBIR) semi-supervised learning double mappings semantic gap
  • 相关文献

参考文献15

  • 1温超,耿国华.基于内容图像检索中的“语义鸿沟”问题[J].西北大学学报(自然科学版),2005,35(5):536-540. 被引量:17
  • 2Yun F , Huang T S. Image classification using correlation tensor analysis. IEEE Transactions on Image Processing, 2008, 17 (2): 226-234.
  • 3Tong S, Chang E. Support vector machine active learning for image retrieval. ACM Multimedia. Ottawa, Canada, 2001.
  • 4Tao D, Tang X, Li X, et al. Asymmetric bagging and random sub- space for support vector machines based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelli- gence ,2007 , 28 (7) : 1088-1099.
  • 5Khertl M L, Ziou D. Relevance feedback for CBIR: a new approach based on probabilistic feature weighting with positive and negative ex- amples. IEEE Transactions on Image Processing, 2006, 15 (4): 1017-1030.
  • 6Kondratovich E, Baskin I I, Varnek A. Transductive Support Vector Machines : Promising Approach to Model Small and Unbalanced Data- sets. Molecular Informatics, 2013,32(3): 261-266.
  • 7Cai D, He X, Han J. Semi-supervised discriminant analysis. In Pro- ceedings of International Conference on Computer Vision, IEEE, 2007:205-211.
  • 8Xu D, Yan S. Semi-supervised bilinear subspace learning. IEEE Transactions on Image Processing, 2009, 18(7) : 1671-1676.
  • 9Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a geo- metric framework for learning from labeled and unlabeled examples . Journal of Machine Learning Research ,2006 (7) :2399-2434.
  • 10Chen Lin, Tsang I W, Xu Dong. Laplacian embedded regression for scalable manifold Regularization. IEEE Transactions on Neural Net- works and Learning Systems ,2012, 23 (6) : 902-915.

二级参考文献21

  • 1周向东 施伯乐 张琪 张亮 刘莉.基于长期学习的多媒体数据相似性检索.软件学报.2004.15(1):86-93[J].http://www.jos.org.cn/1000—9825/1 5/86.htm,:.
  • 2Yu CT, Luk WS, Cheung TY. A statistical model for relevance feedback in information retrieval. Journal of the ACM, 1976,23(2):273-286.
  • 3Rui Y, Huang TS, Mehrotra S. Content-Based image retrieval with relevance feedback in MARS. In: Proc of the IEEE Int'l Conf on Image Processing. Vol.2, New York: IEEE Press, 1997. 815-818.
  • 4Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proc of the 9th ACM Int'l Multimedia Conf Ottawa: ACM Press, 2001. 107-119.
  • 5Fournier J, Cord M. Long-Term similarity learning in content-based image retrieval. In: Proc of the IEEE Int'l Conf on Image Processing. New York: IEEE Press, 2002. 441-444.
  • 6Lu Y, Hu C, Zhu X, Zhang H, Yang Q. A unified semantics and feature based image retrieval technique using relevance feedback.In: Proc of the 8th ACM Int'l Multimedia Conf Los Angeles: ACM Press, 2000. 31-37.
  • 7Bartolini I, Ciaccia P, Waas F. Feedback By pass: A new approach to interactive similarity query processing. In: Proc of the 27th Int'l Conf on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001. 201-210.
  • 8Muller H, Muller W, Squire D. Learning feature weights from user behavior in content-based image retrieval. In: Proc of the Int'l Workshop on Multimedia Data Mining (MDM/KDD 2000). 2000. 67-72. http://www.cs.ualberta.ca/-zaiane/mdm_kdd2000/proceedings.html.
  • 9Yang J, Li Q, Zhuang Y. Octopus: Aggressive search of multi-modality data using multifaceted knowledge base. In: Proc of the 11th Int'l World Wide Web ConL Honolulu: ACM Press, 2002.54-64.
  • 10Cox I, Miller M, Minka T, Papathomas T, Yianilos P. The bayesian image retrieval system, picHunter: Theory, implementation and psychophysical experiments. IEEE Trans on Image Processing, 2000,9(1):20-37.

共引文献18

同被引文献35

  • 1陈忠,赵忠明.基于区域生长的多尺度遥感图像分割算法[J].计算机工程与应用,2005,41(35):7-9. 被引量:26
  • 2袁玉萍,陈庆华,汪洪艳.关于支持向量机VC维问题证明的研究[J].农业与技术,2006,26(3):210-211. 被引量:4
  • 3邱道尹,张红涛,刘新宇,刘彦楠.基于机器视觉的大田害虫检测系统[J].农业机械学报,2007,38(1):120-122. 被引量:33
  • 4Kumar S, Loui A C, Hebert M. An observation- constrained generative approach for probabilistic classification of image regions [J]. Image and Vision Computing, 2003, 21 (1) : 87-97.
  • 5Hart S, Han Y, Hahn H. Vehicle detection method using Haar-like feature on real time system [J]. WorldAcademy of Science, Engineering and Technology, 2009, 59: 455-459.
  • 6Kalinke T, Tzomakas C, von Seelen W. A texture- based object detection and an adaptive model- based classification [C]. Citeseer, 1998.
  • 7Bertozzi M, Broggi A, Castelluccio S. A real-time oriented system for vehicle detection [J]. Journal of Systems Architecture, 1997, 43 (I) : 317-325.
  • 8Dumais S, Platt J, Heckerman D, et al. Inductive learning algorithms and representations for text categorization [C]. ACM, 1998.
  • 9Chang C, Lin C. LIBSVM: A library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2 (3) : 27.
  • 10刘桂霞,王新谱,李秀敏.近红外光谱检测技术在害虫检测中的应用[J].光谱学与光谱分析,2009,29(7):1856-1859. 被引量:11

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部