期刊文献+

对接双材平面中圆弧裂纹问题的数值方法 被引量:2

Numerical Method on Circular Arc Crack in Bi-material Plane
下载PDF
导出
摘要 基于超奇异积分方程法的基本原理,以裂纹弧长坐标为基本变量,以裂纹岸位移间断为基本未知函数,得出双材料平面圆弧裂纹问题的超奇异积分方程组,并通过适当的变量与函数代换建立了相应的数值算法,最终将问题转变为对一个线性方程组的求解.针对圆弧裂纹的计算表明,由于裂纹变曲一般产生应力强度因子减小的良性影响,而双材料界面对附近裂纹应力强度因子的影响则在切变模量比G2/G1<1时变大,而在G2/G1>1时则变小. Based on the principle of the hyper-singular integral equation method, the hyper-singular inte- gral equations of the circular arc crack in the bi-material plane were obtained with the coordinate of crack arc length being the basic variable and the displacement discontinuities of crack being unknown func- tions. The corresponding numerical method was established through appropriate variables and functions substitution. Eventually, the problem could be transformed into the solution for a linear equations. The calculation results on the arc crack showed that the crack bending generally led to the positive impact of the decrease of stress intensity factor. The bi-material interface led to the change of the stress intensity factor near the crack: it became larger when the shear modulus ratio G2/G1 〈 1, and it became smaller when G2/G1 〉 1.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2014年第1期98-102,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 河南省教育厅自然科学基金资助项目 编号2009B130004
关键词 圆弧裂纹 双材料 数值方法 应力强度因子 circular arc crack bi-material numerical method stress intensity factor
  • 相关文献

参考文献10

  • 1Heitzer J, Mattheck C. Fem-calculation of the stress intensity factors of a circular arc crack under uniaxial tension [J].Engi- neering Fracture Mechanics, 1989, 33( 1 ) :91 - 104.
  • 2Lorentzon M, Eriksson K. A path independent integral for the crack extension force of the circular arc crack [ J ]. Engineering Fracture Mechanics, 2000, 66 (5) : 423 - 439.
  • 3Shen Dawei, Fan Tianyou. Semi-inverse method for solving circular arc crack problems [ J]. Engineering Fracture Mechanics, 2004, 71(12) : 1705 -1724.
  • 4Yan Xiangqiao. A boundary element arysis intensity factors of multiple circular arc cracks in a plane elasticity plate[J]. Ap- plied Mathematical Modelling,2010,34 (10) : 2722 - 2737.
  • 5Ioakimids N I. A natural approach to the introduction of finite-part integrals into crack problems of 3-dimensional elasticity[ J]. Engng Fract Mech, 1982,16 (5) : 669 - 673.
  • 6Ioakimids N I. Application of finite-part integrals to the singular integral equations of crack problems in plane and 3-dimensional elasticity[J]. Acta Mech,1982, 45(1/2) : 31 -47.
  • 7Chan Younsha, Fannjiang A C, Panlino G H. Intergral equations with hypersingular kernels-theory and applications to fracturemechanics [ J ]. International Journal of Engineering Science, 2003, 41 (7) : 683 - 720.
  • 8杜云海,乐金朝.双材料平面斜裂纹问题超奇异积分方程方法[J].机械强度,2004,26(3):326-331. 被引量:8
  • 9乐金朝,杜云海,万强,朱秋菊.双材料平面多裂纹问题的超奇异积分方程方法[J].岩石力学与工程学报,2004,23(22):3834-3839. 被引量:4
  • 10杜云海,吕存景,董栋,柯献辉.双材平面中环形界面环向裂纹问题的超奇异积分方程方法[J].机械强度,2006,28(5):733-738. 被引量:4

二级参考文献25

  • 1乐金朝,杜云海,万强,朱秋菊.双材料平面多裂纹问题的超奇异积分方程方法[J].岩石力学与工程学报,2004,23(22):3834-3839. 被引量:4
  • 2刘喜明,沈平,宫文彪.SZL4-13锅炉水冷壁管环向裂纹产生原因分析[J].吉林工学院学报(自然科学版),1996,17(1):1-4. 被引量:3
  • 3[3]Ioakimidis N I. Application of finite-part integrals to the singular integral equations of crack problems in plane and three-dimensional elasticity[J]. Acta Mech.,1982,45(5):31~47
  • 4[4]Qin T Y,Noda N A. Analysis of a three-dimensional crack terminating at an interface using a hypersingular integral equation method[J]. J. Appl. Mech.,ASME,2002,69(3):626~631
  • 5[7]Dundurs J,Hetenyi M. The elastic plane with a circular insert,loaded by a radical force[J]. J. Appl. Mech.,ASME,1961,28(1):103~112
  • 6[8]Hetenyi M,Dundurs J.,The elastic plane with a circular insert,loaded by a tangentially directed force[J]. J. Appl. Mech.,ASME,1962,29(2):362~368
  • 7[10]Chan Y S,Fannjiang A C,Paulino G H. Integral equations with hypersingular kernels-theory and application to fracture mechanics[J]. International Journal of Engineering Science,2003,41(7):683~720
  • 8[11]Chen Y Z. Multiple crack problems of anti-plane elasticity in an infinite body[J]. Engrg. Fracture Mech.,1984,20(5/6):767~775
  • 9Dundurs J, Hetenyi M. The elastic plane with a circular insert, loaded by a radial force. J. Appl. Mech., 1961, (1): 103 ~ 112.
  • 10Hetenyi M, Dundurs J. The elastic plane with a circular insert, loaded by atangentially directed force. J. Appl. Mech. , 1962, (2) :362 ~ 368.

共引文献7

同被引文献20

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部