期刊文献+

慢性缺氧对大鼠肺动脉平滑肌细胞电压门控钾通道电流的影响

Effects of chronic hypoxia on the current of voltage-gated potassium channel in pulmonary artery smooth muscle cells of rats
原文传递
导出
摘要 目的:研究慢性缺氧对大鼠肺动脉平滑肌细胞电压门控钾通道(Kv)电流的影响。方法:雄性SD大鼠50只随机分为常氧对照组(10只)和慢性缺氧5d、10d、20d及30d组(各10只)。慢性缺氧组大鼠每天在低氧仓中予以缺氧8h,分别取缺氧5d、10d、20d及30d的大鼠进行实验。应用全细胞膜片钳技术记录肺动脉平滑肌细胞电压门控钾通道电流(Ix)。结果:慢性缺氧显著减低大鼠肺动脉平滑肌细胞的Ik峰值及I~V曲线漂移。慢性缺氧5d后肺动脉平滑肌细胞的Ix密度及I~V曲线与常氧组均差异无统计学意义(P〉0.05),而慢性缺氧10d后肺动脉平滑肌细胞的Ix密度及I~V曲线与常氧组均差异有统计学差异(均P〈0.05);随着缺氧时间延长,Ix密度的峰值进一步降低。结论:慢性缺氧可降低肺动脉平滑肌细胞Kv通道电流密度。 Objective: To observe the influence of chronic hypoxia on the current of voltage-gated potassium channel in pulmonary artery smooth muscle cells of rats. Method:Fifty male Sprague-Dawley rats were randomly allocated into normoxic group (n= 10) and chronic hypoxic groups. The chronic hypoxic groups were randomly allocated into 4 subgroups (n= 10, respectively) according to the chronic hypoxic periods. The chronic hypoxic subgroups were kept in hypoxia environmental chamber eight hours per day for 5 d, 10 d, 20 d and 30 d, respectively. The normoxic group was kept in room air. The current of voltage-gated potassium channel (IK) in pulmonary artery smooth muscle cells using conventional whole cell patch-clamp technique were measured. Result:There was no significant difference in the density of IK (at + 60 mV) and I- V relationship between normoxic group and group exposed to chronically hypoxia for 5 d (P〉0. 05), whereas difference from chronically hypoxia for 10 d was significant (P〈0.05). With the exposure to hypoxia for prolonged time, the peak density of IK was decreased gradually at +60 mV. Conclusion: Exposure to chronically hypoxia may cause decreased current of voltage-gated potassium channel which leads to hypoxia pulmonary vasoconstriction.
出处 《临床心血管病杂志》 CAS CSCD 北大核心 2014年第3期204-206,共3页 Journal of Clinical Cardiology
基金 湖北省自然科学基金项目(No:2004ABA191)
关键词 电压门控性钾通道 慢性缺氧 缺氧性肺血管收缩 voltage-gated potassium channel chronic hypoxia hypoxia pulmonary vasoconstriction
  • 相关文献

参考文献10

  • 1GUTMAN G A, CHANDY K G, GRISSMER S, etal. Nomenclature and molecular relationships of volt- age-gated potassium channels [J]. Pharmacol Rev, 2005,57:473--508.
  • 2GOLITEIN S A, BAYLISS D A, KIM D, et al. No- menclature and molecular relationships of two-P potassi- um channels[J]. Pharmacol Rev, 2005,57 : 527-- 540.
  • 3KUBO Y, ADELMAN J P, CLAPHAM D E, et al. Nomenclature and molecularrelationships of inwardly rectifying potassium channels [J]. Pharmacol Rev, 2005,57:509--526.
  • 4HONG Z, WEIR E K, VARGHESE A, et al. Effect of normoxia and hypoxia on K+ current and resting membrane potential of fetal rabbit pulmonary artery smooth muscle[J]. Physiol Res, 2005,54 : 175-- 184.
  • 5ARCHER S L, WU X C, THEBAUD B, et al. Pref- erential expression and function of voltage-gated, Oz- sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells[J]. Circ Res,2004,95:308--318.
  • 6WANG J, WEIGAND L, WANG W, et al. Chronic hypoxia inhibits Kv channel gene expression in rat dis- tal pulmonary artery[J]. Am J Physiol Lung Cell Mol Physiol, 2005,288 : L1049-- 1058.
  • 7ARCHER S L, WU X C, THEBAUD B, et al. Pref- erential expression and function of voltage-gated Oz- sensitive Kv channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction ionic diversity in smooth muscle cells [J]. Circ Res,2004,95:308--318.
  • 8PLATOSHYN O, YU Y, GOLOVINA V A, et al. Chronic hypoxia decreases K (V) channel expression and function in pulmonary artery myocytes[J]. Am J physiol Lung Cell Mol Physiol, 2001,280 : L801 -- 812.
  • 9DHAMOON A S, JALIFE J. The inward rectifier current (IK1) controls cardiac excitability and is in- volved in arrhythmogenesis[J]. Heart Rhythm,2005, 2:316--324.
  • 10唐碧,唐明,杜以梅,刘长金,洪志刚,骆红艳,胡新武,宋元龙,席姣娅,Jurgen Hescheler.慢性间歇性低氧降低急性缺氧对大鼠肺动脉平滑肌细胞膜上电压门控性钾通道的抑制[J].生理学报,2004,56(5):625-631. 被引量:3

二级参考文献21

  • 1[1]Hong ZG(洪志刚),Wang DX.Mechanisms ofthe suppression of hypoxic pulmonary vasoconstriction by chronic hypoxia.Prog Physiol Sci(生理科学进展),2000;319(1):72-74 (Chinese, English abstract).
  • 2[2]Davies AR, Kozlowski RZ. Kv channel subunit expression in rat pulmonary arteries. Lung 2001; 179(3):147-161.
  • 3[3]Korovkina VP, England SK. Molecular diversity of vascular potassium channel isoforms. Clin Exp Pharmacol Physiol 2002; 29(4): 317-323.
  • 4[4]Pozeg ZI, Michelakis ED, McMurtry MS, Thebaud B, Wu XC, Dyck JR, Hashimoto K, Wang S, Moudgil R, Harry G,Sultanian R, Koshal A, Archer SL. In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic rats. Circulation 2003;107(15):2037-2044.
  • 5[5]Archer SL, Weir EK, Reeve HL, Michelakis E. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol 2000;475: 219-240.
  • 6[6]Hong Zhigang(洪志刚),Kong Wei,Wang DX.Influences of chronic hypoxia on the variation of HIF-1 mRNA modified by actue hypoxia in PAEC of rats. Chin J Appl Physiol (中国应用生理学杂志)2000;16(3):11-14(Chinese,English abstract).
  • 7[7]Hong ZG(洪志刚),Wang DX,Hu QH,Chen QL,Sun BY.Role of K+channels in attenuated pulmonary vasoreactivity following chronic low pressure hypoxia in rats. Chin J Pathophysiol(中国病理生理杂志)2001;17(10):960-963(Chinese, English abstract).
  • 8[8]Xue QF(薛全福),Xie JM,Hu CG.The model ofisobaric hypoxic pulmonary hypertension in rats. Chin J Tuber Respir dis(中华结核和呼吸疾病杂志)1989;12(6):350-351.
  • 9[9]Archer SL, Huang JM, Reeve HL, Hampl V, Tolarova S,Michelakis E, Weir EK. Differential distribution of electrophsiological distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ Res 1996; 78(3): 431-442.
  • 10[10]Coppock, EA, Martens JR, Tamkun MM. Molecular basis of hypoxia-induced pulmonary vasoconstriction: role of voltage-gated potassium channel. Am J Physiol Lung Cell Mol Physiol 2001; 281(1): L1-L12.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部