摘要
利用不动点理论,讨论如下方程y′(t)=-a(t)y(t)+f(t,y(t-τ(t)))变号周期解的存在性,给出方程三个非零变号周期解的存在性,其中一个是正的,一个是负的,另一个是变号的。
In this paper, the existence of sign-changing periodic solutions for first order functional differential equations of the form y(t)=-a(t)y(t)+f(t,y(t-τ(t))) is considered by using the fixed point theorems. The main results are some new three-solution theorem, which are different from the results in [3,4]. These three solutions are all nonzero. One of them is positive, another is negative, and the third one is a sign-changing solution.
出处
《山西大同大学学报(自然科学版)》
2014年第1期1-3,7,共4页
Journal of Shanxi Datong University(Natural Science Edition)
基金
山西大同大学博士科研启动基金项目[2010-B-01]
国家自然科学基金项目[11271235]
关键词
一阶泛函微分方程
锥
e-连续
变号周期解
不动点定理
first order functional differential equations
cone
e-continuous
sign-changing periodic solution
fixed point theorem