期刊文献+

Li_(1.2)Mn_(0.54)Co_(0.13)Ni_(0.13)O_2@V_2O_5核壳复合材料的制备及其电化学性能 被引量:1

Preparation of Li_(1.2)Mn_(0.54)Co_(0.13)Ni_(0.13)O_2@V_2O_5 Core-shell Composite and Its Electrochemical Properties
下载PDF
导出
摘要 采用溶胶-凝胶技术在富锂锰基固溶体Li1.2Mn0.54Co0.13Ni0.13O2表面包覆V2O5,制备了Li1.2Mn0.54Co0.13Ni0.13O2@V2O5核壳复合材料。通过扫描电镜(SEM)和透射电镜(TEM)观察其形貌,X射线衍射(XRD)分析确定其结构。结果显示,结晶态的V2O5均匀包覆在类球形Li1.2Mn0.54Co0.13Ni0.13O2颗粒表面,Li1.2Mn0.54Co0.13Ni0.13O2材料的晶体结构在包覆前后保持不变。X射线光电子能谱(XPS)分析结果表明,该核壳复合材料首次充电时,锂离子嵌入V2O5包覆层。电化学测试结果表明,表面包覆15%V2O5的核壳复合材料具有最佳的电化学性能:0.1C倍率下放电比容量为276 mAh/g,首次充放电库仑效率达到94%,50次循环后容量保持率达89%。 Li1.2Mn0.54Co0.13Ni0.13O2@V2O5 core-shell composite was prepared by coating V2O5 on the surface of the lithium-rich manganese-based solid solution Li1.2Mn0.54Co0.13Ni0.13O2 particles through Sol-Gel technology. Its morphology was observed by using scanning electronic microscope (SEM) and transition electronic microscope (TEM) while the crystal structure was calculated from the results of the X-ray diffraction (XRD). It is found that the quasi spherical core-shell composite is coated homogeneously with the crystalline V2O5 nanoparticles. The crystal structure of Li1.2Mn0.54Co0.13Ni0.13O2 core is maintained after the surface coating. XPS spectra suggest that Li^+ ions intercalate the crystal structure of the V2O5 shell during the first charge. The electrochemical measurements show that the core-shell composite being coated with 15% V2O5 could deliver an initial capacity of 276 mAh/g at the rate of 0.1C accompamied by a coulombic efficiency of 94%. It can remain 89% of the initial capacity after 50 charge/discharge cycles.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2014年第3期257-263,共7页 Journal of Inorganic Materials
基金 国家自然科学基金(21174119)~~
关键词 富锂锰基固溶体 表面包覆 核壳结构 库仑效率 锂离子电池 Li-rich manganese-based solid solution surface coating core-shell structure coulombic efficiency lithium-ion battery
  • 相关文献

参考文献4

二级参考文献82

  • 1Li W, Currie J C. J. Electrochem. Soc., 1997, 68: 565-569.
  • 2Armstrong R A, Bruce P G. Nature, 1996, 381: 499-500.
  • 3Capitaine F, Gravereau P, Delmas C. Solid State Ionics, 1996, 89: 197-202.
  • 4Gummow R J, de Kock A, Thackeray M M. Solid State Ionics, 1994, 69: 59-67.
  • 5Ohzuku T, Kitagawa M, Hirai T. J. Electrochem. Soc., 1990, 137: 40-46.
  • 6Tarascon J M, Wang E, Shokoohi F K, McKinnon W R, Colson S. J. Electrochem. Soc., 1991, 138: 2859-2864.
  • 7Pahdi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144: 1188-1194.
  • 8Strobel P, Lambert-Andron B. J. Solid State Chem., 1988, 75: 90-98.
  • 9Rossouw M H, Liles D C, Thackeray M M. J. Solid State Chem., 1993, 104: 464-466.
  • 10Johnson C S, Korte S D, Vaughey J T, Thackeray M M, Bofinger T E, Shao-Horn Y, Hackney S A. J. Power Sources, 1999, 81: 491-495.

共引文献72

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部