期刊文献+

质子辐照对多层膜巨磁电阻结构磁性能的影响(英文) 被引量:1

Magnetic Properties of Proton Irradiated Giant Magnetoresistance Multilayers
下载PDF
导出
摘要 研究了质子辐照对多层膜巨磁电阻结构磁性能的影响。利用5 MeV的不同辐照剂量和剂量率的质子对磁控溅射法制备的CoFe/(CoFe/Cu)10/CoFe/Ta多层膜巨磁电阻结构进行辐照实验。XRD分析表明质子辐照没有改变CoFe/Cu的晶格结构。分析磁滞回线和磁电阻曲线得知在实验选取的辐照剂量范围内,饱和磁化强度和本征电阻随着辐照剂量的增加而增加,而矫顽场和磁电阻率随剂量的增加而减小。利用质子辐照对自旋相关散射、平均自由程的影响解释了本征电阻的变化,并基于二流体模型对磁电阻率的变化进行了分析。由此得出,多层膜巨磁电阻结构具有一定的抗辐照能力。 The magnetic properties of proton irradiated CoFe/(CoFe/Cu)10/CoFe/Ta giant magnetoresistance multilayers (GMR-MLs) were investigated experimentally and theoretically. GMR-MLs were prepared by magnetron sputtering and exposed to 5 MeV proton beam with a series of radiation fluences and fluence rates. X-ray diffraction indicated that the crystal structures of CoFe/Cu were unaffected after irradiation. The saturation magnetization and intrinsic resistance increased monotonically with the increase of the radiation fluence and fluence rate. The value of MR in the irradiated samples decreased slightly with the radiation fluence, which was mainly explained from the two spin- related conductivity channel model.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2014年第3期331-336,共6页 Journal of Inorganic Materials
基金 National Natural Science Foundation of China(61025021,60936002,51072089,51372130) National Key Project of Science and Technology(2011ZX02403-002) Natural Science Foundation of Beijing(NSF 3111002)
关键词 巨磁电阻 质子辐照 自旋相关散射 二流体模型 giant magnetoresistance proton irradiation spin-related scattering two spin-related conductivity channel
  • 相关文献

参考文献2

二级参考文献36

  • 1Wang S X, Li G. Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlook. IEEE transactions on Magnetics, 2008, 44: 1687-1702.
  • 2Baselt D R, Lee G U, Natesan M, et al. A biosensor basedon magnetoresistance technology. Biosensors & Bioelec- tronics, 1998, 13: 731-739.
  • 3Hall D A, Gaster R S, Lin T, et al. Biosensors and bioelectronics GMR biosensor arrays: A system perspective. Biosensors & Bioelectronics, 2010, 25: 2051-2057.
  • 4Kasatkin S I, Vasil'eva N P, Murav'ev A M. Biosensors based on the thin-film magnetoresistance sensors. Automation and Remote Control, 2010, 71: 156-166.
  • 5Wood D K, Ni K K, Schmidt D R, et al. Submicron giant magnetoresistive sensors for biological applications. Sensors andActuators A, 2005, 120: 1-6.
  • 6Li GSun S, Wilson R J, et al. Spin valve sensors for ultrasensitive detection of superparamagnetic nanopartieles for biological applications. Sensors and Actuators, 2006, 126: 98-106.
  • 7Wang S X. Giant magnetoresistive biochips for biomarker detection and genotyping: An overview. Biomagnetism and Magnetic Biosystems Based on Molecular Recognition Processes, 2008, 1025: 101-111.
  • 8Pannetier-Lecoeur M, Fermon C, Dyvorne H, et al. Magnetoresistive-superconducting mixed sensors for biomagnetic applications. Journal of Magnetism and Magnetic Materials, 2010, 322: 1647-1650.
  • 9Djamal M, Ramli, Khairurrijal. Giant magnetoresistance material and its potential for biosensor applications. In: International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME 2009). 2009: 382-387.
  • 10Schotter J, Kamp P B, Becker A, et al. A biochip based onmagnetoresistive sensors. IEEE transactions on Magnetics, 2002, 38: 3365-3367.

共引文献1

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部