期刊文献+

动态加权投票的多分类器聚合 被引量:1

Multiple Classifier Fusion with Dynamic Weighted Voting
下载PDF
导出
摘要 在使用多分类器系统时,一种流行的方法是采用简单的多数投票策略来聚合多分类器。然而,当各个独立的分类器的性能不统一时,这种简单的多数投票规则会对分类结果造成负面影响。引入一种新的动态加权函数来聚合多个分类器,动态加权函数通过增加分类结果距离样本最近的分类器的权值来提高分类器的性能。在UCI机器学习数据库中的几个现实问题数据集上的实验结果表明动态加权的多分类器聚合方法比简单的多数投票方法能取得更好的分类结果。 When a multiple classifiers system is used, one of the most popular methods to realize the classifier fusion is the simple majority voting. When the performance of each single classifier is not consistency, the efficiency of this simple majority voting generally results affected negatively. Introduces a new function of dynamic weighting for classifier fusion. This new dynamic weighting procedure is to reward the individual classifier with the nearest neighbor to the input pattern. Experimental results on the several real-problem data sets from the UCI machine learning database repository show that dynamic weighting strategies is better than the simple majority voting scheme.
出处 《现代计算机(中旬刊)》 2014年第2期8-11,共4页 Modern Computer
基金 惠州市科技计划项目(No.2011B020006002 2011B020006009) 惠州学院校立项目(No.2012YB14)
关键词 多分类器 动态加权 机器学习 模式识别 Multiple Classifiers Dynamic Weighting Machine Learning Pattern Recognition
  • 相关文献

参考文献10

  • 1G.T. Dietterich: Machine Learning Research: Four Current Directions. AI Magazine, 1997, 18:97-136.
  • 2杨庚,王安琪,陈正宇,许建,王海勇.一种低耗能的数据融合隐私保护算法[J].计算机学报,2011,34(5):792-800. 被引量:58
  • 3米爱中,郝红卫,郑雪峰,涂序彦.一种自整定权值的多分类器融合方法[J].电子学报,2009,37(11):2604-2608. 被引量:9
  • 4Smith C, Jin Y, Doherty J. Recurrent Neural Network Ensembles for Convergence Prediction. Surrogate-Assisted Evolutionary Opti- mization[J]. Sponsoring Institutions, 2012:85-92.
  • 5Gou J, Du L, Zhang Y, et al. A New Distance-Weighted k-Nearest Neighbor Classifier[J]. Journal of Information and Computational Science, 2012, 9:1429-1436.
  • 6R.N. Shepard: Toward a Universal Law of Generalization for Psychological Science, Science, 1987, 237:1317-1323.
  • 7R. Barandela, R.M. Valdovinos, J.S. Sa'nchez: New Applications of Ensembles of Classifiers, Pattern Analysis and Applications, 2003, 6:245-256.
  • 8L. Breiman: Bagging Predictors, Machine Learning, 1996, 24:123-140.
  • 9Y. Freund, R.E. Schapire: Experiments with a New Boosting Algorithm, In: Proc. of the 13th Intl. Conference on Machine Learning, 1996 : 148-156.
  • 10L. Breiman: Arcing Classifiers, Annals of Statistics, 1998, 26:801-823.

二级参考文献29

  • 1Rahman A F R, Fairhurst M C. Multiple classifier decision combination strategies for character recognition: a review[ J ]. International Journal on Document Analysis and Recognition (IJDAR) ,2003,5(4): 166 - 194.
  • 2Jain A K, Duin R P W, Mao Jianchang. Statistical pattern recognition: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22( 1 ) :4 - 37.
  • 3Altincay H,Demireklera M. Undesirable effects of output normalization in multiple classifier systems[ J]. Pattern Recognition Letters,2003,24(9- 10):1163- 1170.
  • 4Raudys s, Roli F. The behavior knowledge space fusion method: analysis of generalization error and strategies for performance improvement [A], Proceedings of 4th International Workshop on Multiple Classifier Systems (MCS) [C]. Lecture Notes in Computer Science (LNCS), Berlin: Springer-Verlag Press, 2003.2709.55 - 64.
  • 5Parker J R. Rank and response combination from confusion matrix data[J]. Information Fusion,2001,2(2) : 113- 120.
  • 6Kuncheva L l,Bezdek J C,Duin R P W. Decision templates for multiple classifier fusion.. An experimental comparison[ J]. Pattern Recognition,2001,34(2) :299 - 314.
  • 7Thierry D. A neural network classifier based on Dempster- Shafer theory [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,2000,30(2) : 131 - 150.
  • 8Valet L, Ramasso E, Teyssier S. Quality evaluation of insulating parts by fusion of classifiers issued from tomographic images [ J ]. Information Fusion, 2008,9(2 ) :211 - 222.
  • 9Xu Lei, Krzyzak A, Suen Ching Y. Methods of combining multiple classifiers and their applications to handwriting recognition[ J ]. IEEE Transactions on System, Man, and Cybernetics, 1992,22 ( 3 ) :418 - 435.
  • 10Duin R P W, Juszczak P, Paclik P, et al. PRTools4, A Matlab Toolbox for Pattern Recognition[CP/OL]. Delft University of Technology, 2004.

共引文献65

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部