期刊文献+

结构化地物的异质性分析及其计算方法

Heterogeneity Analysis and Its Calculation Method for Structured Geographic Objects
原文传递
导出
摘要 将具有明显空间结构的非连续性地物数据的结构分析研究,归纳为空间数据的结构化异质性分析问题。在此概念的基础上引用曲线论的方法分析了结构化异质性的变异函数的构成,得出变异距离受样本点间地物弧长及其空间复杂度共同影响的结论,由此推出变异距离函数的解析表达公式。之后给出了结构化异质性的实验变异函数的一种近似计算方法,该方法在样本合理分布的前提下一致收敛于真实变异值。最后介绍了结构化异质性模型在青藏铁路路基沉降数据的结构分析计算中的一个应用实例。 The structural analysis problem of the non-continuity geographic objects with significant spatial structures hasn't been adequately addressed. Because of the non-linearity characteristic of structured geo- graphic objects,the classic spatial interpolation methods such as Ordinary Kriging, which is based on Eu- clidean distance, can not complete this mission. To solve this issue,a concept of structured heterogeneity of the spatial data was put forward. After introducing the curve theory of differential geometry,the semivario- gram model of the structured heterogeneity was analyzed, which indicates that the lag depends on the arc length between sample points and the complexity of the research region. In the next section, the analytic formulas of the lag was deduced. The above steps were followed by an approximation calculation method for experimental semivariogram of structured heterogeneity, which is able to uniformly converge to true semivariogram in the condition of the reasonable distribution of sample points. Finally,an application using the embankment settlement data of Qinghai-Tibetan Railway was provided.
作者 刘丰 郭建文
出处 《遥感技术与应用》 CSCD 北大核心 2014年第1期122-129,共8页 Remote Sensing Technology and Application
基金 国家973计划项目(2012CB026106)
关键词 变异函数 结构化异质性 结构分析 曲率 三次样条插值 Semivariogram Structured heterogeneity Structural analysis Curvature Cubic spline interpola- tion
  • 相关文献

参考文献14

  • 1Zimmerman D L. Another Look at Anisotropy in Geostatistics [J]. Mathematical Geology, 1993,25 (4) .- 453-470.
  • 2Boisvert J B,Manchuk J G,Deutsch C V. Kriging in the Pres- ence of Locally Varying Anisotropy Using Non-Euclidean Distances[J]. Mathematical Geosciences, 2009,41 ~ 585-601.
  • 3Chris B M,Judith J J C. Mapping Curvilinear Structures with Local Anisotropy Kriging[J]. Mathematical Geology, 2005,37(6):635-649.
  • 4Ver Hoef J M,Peterson E,Theobald D. Spatial Statistical Mo- dels that Use Flow and Stream Distance[J], Env{ronmental and Ecologica] Statistics, 2006,13 : 449-464.
  • 5Curriero F C. On the Use of Non euclidean Distance Measures in Geostatistics[J]. Mathematical Geology, 2006,38 (8), 907- 926.
  • 6Eriksson M, Siska P P. Understanding Anisotropy Computa- tions[J]. Mathematical Geology, 2000,32 (6) ~ 683-700.
  • 7刘耀林,傅佩红.Kriging空间分析法及其在地价评估中的应用[J].武汉大学学报(信息科学版),2004,29(6):471-474. 被引量:35
  • 8陈省身,陈维桓.微分几何讲义(第二版)[M].北京:北京大学出版社,2003,273-313.
  • 9Bica A M. Fitting Data Using Optimal Hermite Type Cubic Interpolating Splines[J]. Applied Mathematics Letters, 2012, doi: 10. 1016/i. aml. 2012.04. 016.
  • 10De Boor C. A Practical Guide to Splines[M]~. New York= Springer-Verlag, 2001 : 1-50.

二级参考文献38

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部