期刊文献+

电离层LBH日辉辐射大视场计算方法 被引量:2

A method to calculate the ionospheric LBH dayglow emissions for the large field of view
下载PDF
导出
摘要 LBH日辉辐射是由光电子与氮气分子碰撞激发而产生的,是电离层在远紫外辐射波段中最强的分子辐射信号.从空间对电离层LBH日辉辐射进行成像观测为高层大气状态的监测提供了一种强有力的方法.本文分析了LBH辐射的谱带特征,采用电子碰撞直接激发理论,使用球几何大气模型,针对大视场观测模式,给出了一种改进的LBH日辉柱辐射率计算方法RAURIC.RAURIC针对AURIC辐射算法的局限性主要有两点改进:一是增加了观测方位角;二是考虑了沿观测视线LOS方向上太阳天顶角的变化.我们使用RAURIC计算了140~180nm波段的LBH日辉辐射,并与AURIC进行了比较,结果表明:在天底方向上,二者具有非常好的一致性;在其他观测方向上,尤其在大视场观测模式下,则需要使用RAURIC进行计算.本文工作为电离层LBH日辉图像模拟技术与数据反演技术的研制奠定了基础. LBH dayglow emissions in the ionosphere,produced by the photoelectrons impact on the nitrogen molecules,are the most prominent molecular signals in the far ultraviolet emission range.Imaging the LBH dayglow emissions from the space can be a powerful method to monitor the state of the upper atmosphere.We analyze the spectral characteristics of the LBH emissions according to the direct excitation theory and the spherical geometry,and give a revised method to calculate the column emission rates of the LBH dayglow emissions for the large field of view.The RAURIC mainly improves two limitations of AURIC;one is the definition of the observation zenith angle,and the other is treating the Solar Zenith Angle as a variable along the LOS direction.With this method,we calculate the column emission rates of the LBH bands in therange of 140~180nm.Comparison of the results of RAURIC with AURIC shows that they have great agreement in nadir,while in other lines of sight we should use RAURIC,especially for the large field of view.Thus,this work builds a solid basis for simulating the image of ionospheric LBH dayglow emissions and the data inversion technique.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2014年第2期354-363,共10页 Chinese Journal of Geophysics
基金 国家高技术研究和发展计划863项目(2012AA121000) 国家重点基础研究发展计划973项目(2012CB957800 2011CB811400) 国家自然科学基金项目(10878004 41274147 41204102)资助
关键词 电离层 远紫外辐射 LBH带 柱辐射率 Ionosphere FUV emission LBH bands Column emission rates
  • 相关文献

参考文献2

二级参考文献23

  • 1Akasofu S-I. The development of the auroral substorm. Planet. Space Sci. , 1964,12:273
  • 2Akasofu S-I. Physics of Magnetospheric Substorms. Dordrecht-Boston: D Reidel Publishing Company, 1977. 381-472
  • 3Kamide Y,Baujohann W.磁层-电离层耦合.徐文耀译.北京:科学出版社,2005
  • 4Ahn B-H,Chen G X, Sun W, et al. Equatorward expansion of the westward electrojet during magnetically disturbed periods. J. Geophys. Res., 2005,110(A):A01305
  • 5Chen G X, Xu W Y, Wei Z G, et al. Auroral electrojet oval. Earth Planets Space, 2003 ,55(5) : 255-261
  • 6Kamide Y, Ahn BH, Akasofu S-I, et al. Global distribution of ionospheric and field-aligned currents during substorms as determined from six IMS meridian chains of magnetometers: initial results. J. Geophys. Res. , 1982,87(A) :8228
  • 7Chapman S, Bartels J. Geomagnetism. Oxford: Clarendon Press, 1940
  • 8Matsushita S, Campbell W H. Physics of Geomagnetic Phenomena. New York: Academic Press, 1967
  • 9Sun W, Xu Wen-yao, Akasofu S-I. Mathematical separation of directly driven and unloading components in the ionospheric equivalent currents during substorms. J. Geophys. Res. , 1998, 103(A) : 11695
  • 10Sun W, Xu Wen-Yao, Akasofu S. -I. An improved method to deduce the unloading component for magnetospheric substorms. J. Geophys. Res. , 2000,105(A): 13131

共引文献16

同被引文献32

  • 1Barlier F, Berger C, Falin J, et al. 1978. A thermospheric model based on satellite drag data. Ann Geophys, 34:9-24.
  • 2Berger C, Biancale R, Ill M, et al. 1998. Improvement of the empirical thermospheric model DTM:DTM-94-comparative review on various temporal variations and prospects in space geodesy applications. J Geodesy, 72:161-178.
  • 3Bilitza D, Reinisch B W. 2008. International reference ionosphere 2007:Improvements and new parameters. Adv Space Res, 42:599-609.
  • 4Bilitza D, Altadill D, Zhang Y, et al. 2014. The international reference ionosphere 2012—A model of international collaboration. J Space Weather Space Clim, 4:1-12.
  • 5Bishop J, Feldman P D. 2003. Analysis of the Astro-1/Hopkins Ultraviolet Telescope EUV-FUV dayside nadir spectral radiance measurements. J Geophys Res, 108:1243, doi:10.1029/2001JA000330.
  • 6Bobik P, PutisM, Bertaina M. 2013. UV night background estimation in South Atlantic Anomaly. 33rd International Cosmic Ray Conference. ID0874:123-127.
  • 7BruinsmaS L, Thuillier G, Barlier F. 2003. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary:Accuracy and properties. J Atmos Sol-TerrPhys, 65:1053-1070.
  • 8Bruinsma S L, Tamagnan D, Biancale R, et al. 2004. Atmospheric densities derived from CHAMP/STAR accelerometer observations. Planet Space Sci, 52:297-312.
  • 9Bruinsma S L, Sánchez-Ortiz N, Olmedo E, et al. 2012. Evaluation of the DTM-2009 thermosphere model for benchmarking purposes. J Space Weather Space Clim, 2:1-14.
  • 10Culot F, Lathuillere C, Lilensten J, et al. 2004. The OI 630.0 and 557.7 nm dayglow measured by WINDⅡ and modeled by TRANSCAR. Ann Geophys, 22:1947-1960.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部