摘要
Nestin+ neurons have been shown to express choline acetyltransferase (CHAT) in the medial septum-diagonal band of Broca in adult rats. This study explored the projection of nestin+ neu-rons to the olfactory bulb and the time course of nestin+ neurons in the medial septum-diagonal band of Broca in adult rats during injury recovery after olfactory nerve transection. This study observed that all nestin+ neurons were double-labeled with ChAT in the medial septum-diagonal band of Broca. Approximately 53.6% of nestin~ neurons were projected to the olfactory bulb and co-labeled with fast blue. A large number of nestin~ neurons were not present in each region of the medial septum-diagonal band of Broca. Nestin+ neurons in the medial septum and vertical limb of the diagonal band of Broca showed obvious compensatory function. The number of nestin+ neurons decreased to a minimum later than nestin/CHAT+ neurons in the medial sep- turn-diagonal band of Broca. The results suggest that nestin+ cholinergic neurons may have a closer connection to olfactory bulb neurons. Nestin+ cholinergic neurons may have a stronger tolerance to injury than Nestin/CHAT+ neurons. The difference between nestin+ and nestin-/ ChAT+ neurons during the recovery process requires further investigations.
Nestin+ neurons have been shown to express choline acetyltransferase (CHAT) in the medial septum-diagonal band of Broca in adult rats. This study explored the projection of nestin+ neu-rons to the olfactory bulb and the time course of nestin+ neurons in the medial septum-diagonal band of Broca in adult rats during injury recovery after olfactory nerve transection. This study observed that all nestin+ neurons were double-labeled with ChAT in the medial septum-diagonal band of Broca. Approximately 53.6% of nestin~ neurons were projected to the olfactory bulb and co-labeled with fast blue. A large number of nestin~ neurons were not present in each region of the medial septum-diagonal band of Broca. Nestin+ neurons in the medial septum and vertical limb of the diagonal band of Broca showed obvious compensatory function. The number of nestin+ neurons decreased to a minimum later than nestin/CHAT+ neurons in the medial sep- turn-diagonal band of Broca. The results suggest that nestin+ cholinergic neurons may have a closer connection to olfactory bulb neurons. Nestin+ cholinergic neurons may have a stronger tolerance to injury than Nestin/CHAT+ neurons. The difference between nestin+ and nestin-/ ChAT+ neurons during the recovery process requires further investigations.
基金
the Guangdong Natural Science Foundation of China,No.S2011040004372
the Fundamental Research Funds for the Central Universities,No.11ykpy05