期刊文献+

基于奇异值分解的光子相关光谱滤波方法研究 被引量:2

Study on the filtering algorithm of photon correlation spectroscopy based on singular value decomposition
原文传递
导出
摘要 针对光子相关光谱颗粒测量法在测量超细纳米颗粒时,容易受噪声影响,导致拟合误差较大的问题,提出了一种基于奇异值分解的光子相关光谱滤波方法。其处理步骤为:利用颗粒系的光强自相关函数数据构造Hankel矩阵H;对矩阵进行奇异值分解;根据奇异值的大小分布,确定噪声级别和重建参数r;从重建矩阵H1中提取经滤波后的光强自相数据,再通过传统方法进行拟合,得到颗粒的粒径分布。实验中采用30nm标准乳胶球单分散颗粒系,以及30nm和100nm标准乳胶球双分散颗粒系进行实验对比。结果证明:基于奇异值分解的光子相关光谱滤波法有效地提高了测量准确性。 During the measurement of the ultrafine nanoparticles's size with the method of PCS(Photon Correlation Spectroscopy), the fitting results are always susceptible to the noise and have quite large errors. To solve the problem, the filtering algorithm of photon correlation spectroscopy based on singular value decomposition is proposed. Its proce- dure is: the Hankel matrix H with the intensity autocorrelation data is constructed; the singular value decomposition of H is calculated; the reconstruction parameters r with the singular value of H1 are deter- mined; the filtered light intensity autocorrelation data from the reconstruction matrix H1 are extracted, and fitting with the traditional method, and then the particle size distribution is obtained. The experiment is carried out in two different particle dispersions, one is 30nm standard monodisperse la- tex particle dispersion, and another is 30nm and 100nm standard double dispersion latex particle dis- persion. The results show that, the filtering algorithm of photon correlation spectroscopy based on singular value decomposition can improve the measurement accuracy effectively.
出处 《光学技术》 CAS CSCD 北大核心 2014年第1期16-20,共5页 Optical Technique
基金 国家自然科学基金(No.61007002)资助
关键词 纳米颗粒 光子相关光谱 奇异值分解 滤波 nano-particles photon correlation spectroscopy singular value decomposition filtering
  • 相关文献

参考文献15

二级参考文献102

共引文献76

同被引文献23

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2王卫华,牛照东,陈曾平.基于时空域融合滤波的红外运动小目标检测算法[J].红外与激光工程,2005,34(6):714-718. 被引量:13
  • 3李光鑫,王珂.基于Contourlet变换的彩色图像融合算法[J].电子学报,2007,35(1):112-117. 被引量:51
  • 4赵学智,陈统坚,叶邦彦.基于奇异值分解的铣削力信号处理与铣床状态信息分离[J].机械工程学报,2007,43(6):169-174. 被引量:35
  • 5Bae T W, Kim B I, Kim Y C, et al. Small target detection using cross product based on temporal profile in infrared image sequences[J]. Computers & Electrical Engineering, 2010, 36(6): 1156-1164.
  • 6Do Minh N, Vetterli Martin. The contourlet transform: An efficient directional multi-resolution image representation[J]. IEEE Trans. on Image Processing, 2005, 14(12): 2091-2106.
  • 7Da Cunha Arthur L, Zhou Jiangping, Do Milan N. The non-subsampled contourlet transform: theory, design and applications[J]. IEEE Trans. on ImageProecessing, 2006, 15(10): 3089-3101.
  • 8ESLAMI R, RADH A H. Wavelet-based contourlet transform and its application to image coding[C]//International Conference on Image Processing, 2004, 5: 3189-3192.
  • 9DUNCAN D P, MINH N D. Directional multi-scale modeling of images using the contourlet transform[J]. IEEE Transactions on Image Processing, 2006, 15(6): 1610-1620.
  • 10RAMIN E, H AYDER R. Translation invariant contourlet transform and its application to image denoising[J]. 1EEE Transactions on Image Processing, 2006, 15(11): 3362-3374.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部