摘要
本文首先证明了一类集值映射的下半连续性 .在此基础上给出了 Banach空间集值映射的一个连续不动点定理 ,作为应用 ,证明了一类微分包含解的存在性 .
In this paper,weshow the low semi-continuity fora kind of setvalued functions. Sequentially, we give a continuous fixed point theorem for a setvalued function on the Banach space.As its application, we prove an existence theorem fora parameterized differential inclusion,meanwhile,pointoutthe continuity of the solutions with respectto the parameter. This method is new completely.
出处
《应用泛函分析学报》
CSCD
2000年第2期159-165,共7页
Acta Analysis Functionalis Applicata
基金
国家自然科学基金
博士点基金资助项目