期刊文献+

伪单调算子紧扰动的值域 被引量:3

Ranges of Sums for Compact Perturbations of Pseudo-monotone Operators
下载PDF
导出
摘要 设 X是自反 Banach空间且 X和 X*均为局部一致凸空间 ,D是 X的开、有界、凸子集 ,T∶D→X*是伪单调算子 (pseudo-monotone) ,C∶D→ X*是紧算子或全连续算子 .利用 (S+)型算子的度理论 ,我们建立了 T+C值域性质的几个结果 . Let X be a reflexive Banach space with both X and X * locally uniformly convex. D is a bounded, open, convex subset of X. T∶D→X * is a pseudo\|monotone operator; C∶D→X * is a compact or strongly continuous operator. By degree theory of operator of type (S\-+) , certain range properties of T+C are established. The results applied to the study of existence of some partial differential equations under various boundary conditions.
作者 何震
机构地区 河北大学数学系
出处 《应用泛函分析学报》 CSCD 2000年第3期264-270,共7页 Acta Analysis Functionalis Applicata
基金 河北省自然科学基金!(1 970 61 )
关键词 伪单调算子 (S+)型算子 同伦 紧扰动 局部一致凸空间 值域 pseudo\|monotone operator operator of type (S\-+) homotopy of class (S +)
  • 相关文献

参考文献6

  • 1BrowderFE.Fixedpointtheoryandnonlinearproblems[J].BullAmerMathSoc,1983,9:1~39.
  • 2HEZhen.Somemappingtheoremsinvolvingtheperturbationsofmaccretiveoperators[J].NonlinearAnalTMA,1992,19:345~351.[3]PascaliD,SburlanS.NonlinearMappingofMonotoneType[M].Sijthoff&NoordhoffBucharest,1978.
  • 3GuanZ.RangesofoperatorsofmonotonetypeinBanachspace[J].JMathAnalAppl,1993,174:256~264.
  • 4KartsatorsAG.OncompactperturbationsandcompactresolventsofnonlinearmaccretiveoperatorsinBanachspaces[J].ProcAmerMathSoc,1993,119(4):1189~1194.
  • 5ZeiderE.NonlinearFunctionalAnalysisandItsApplications[M].VolⅡ(B),NonlinearMonotoneOperators,SpringerVerlag,Berlin,1990.
  • 6AdlyS,GoelevenD,ThéraM.Recessionmappingsandnoncoercivevariationalinequalities[J].NonlinearAnalysisTMA,1996,26(9):1573~1603.

同被引文献17

  • 1郭大均.非线性泛函分析[M].济南:山东科技出版社,1985..
  • 2kartsatos A G. New results in the perturbation theory of m-accretive operators in Banach spaces.Tran. Amer. Math. Soc, 1996, 348(3): 1663-1707.
  • 3Guan Z and Kartsatos A G. Range of perturbed maximal monotone and m-accretive operators in Banach spaces. Tran. Amer. Math. Soc, 1995, 347(7): 2403-2435.
  • 4Barbu V. Nonlinear Semigroups and Evolution Equations in Banach spaces. Noorhoff, Leyden,1978.
  • 5Dan Pascali and Silviu Sburlan. Nonlinear Mappings of Monotone Type. Editura Academiei,Bucuresti, Romania. 1978.
  • 6Guan Z. Ranges of operators of monotone type in Banach spaces. Math. Anal. Appl, 1993, 174:256-264.
  • 7Zeider E. Nonlinear Funtional Analysis and its Applications. Vol Ⅱ(B),Nonlin-ear Monotone Operators, Spinger Verlag. Berlin, 1990.
  • 8郭大均.非线性泛函分析[M].济南:山东科学技术出版社,1985..
  • 9ZEIDER E. Nonlinear functional analysis and its applications[M]. Berlin:Springer Verlag, 1990.
  • 10BROWDER F E. Fixed point theory and nonlinear problems[ J ]. Bull Amer Math Soc, 1983,9:1- 39.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部