摘要
本文讨论拟正则保正型α-过份函数的积分表示,证明拟正则保正型(ε,D(ε))的任意α-过份函数u均可表示为εα(u,v)=vdμ,V D(ε)μ是 E上的σ有限测度·并证明(ε, D(ε))的h-结合过程是暂留的和非保守的.
In this paper, we first give a representation of α-excessive function of quasi-regular positivity preserving coercive forms (ε, D(ε)). More precisely, for any u E D(ε), u is an α-excessive function of (ε, D(ε)) if and only if there exists a unique α-finite positive measure μ on (E, β(E)) such that μ dose not charge ε-exceptional sets, D(ε) C L1(E, μ) and where v is all ε-quasi-continuous n-version of v. Then, we prove that the h-associated processes of symmetric quasi-regular positivity preserving coercive form is transient, non-conservative and non-recurrent.
出处
《应用概率统计》
CSCD
北大核心
2000年第4期409-415,共7页
Chinese Journal of Applied Probability and Statistics
基金
数学天元基金资助.