期刊文献+

环糊精水解酶底物运输通道的动态结构分析 被引量:1

Dynamic Structural Study on Substrate Transport Channels of Cyclodextrin Hydrolase
下载PDF
导出
摘要 【目的】环糊精水解酶是作用于特殊底物的水解酶,可以水解圆锥形结构的底物。分析这个酶的底物通道为水解特殊结构底物提供研究基础。【方法】利用分子动力学模拟环糊精水解酶存在的底物通道,比较环糊精水解酶BsCMD_1J0H和TspCMD_1SMA在底物运输通道上的差异。【结果】BsCMD_1J0H和TspCMD_1SMA都为糖基水解酶家族13的蛋白质,它们的碳骨架基本吻合,而在α?螺旋分布上,TspCMD_1SMA相比于BsCMD_1J0H来说,螺旋结构更趋向于在蛋白质中心聚集。BsCMD_1J0H有6条底物通道连通蛋白质表面和活性中心,TspCMD_1SMA有8条底物通道连通。BsCMD_1J0H的底物通道平均半径为1,TspCMD_1SMA的底物通道平均半径为1.2。【结论】本研究提供了BsCMD_1J0H和TspCMD_1SMA两个蛋白质在和底物接触中的相关底物通道信息。 [Objeetive]Cyclodextrin hydrolase contains a special function on substrate. It can hydrolyze cyclodextrin molecule with a conical structure. The analysis of the substrate channels of this enzyme would help the basic research on enzymatic hydrolysis of special substrate. [Method]The analyses of substrate tunnels from cyclodextrin hydrolases, named BsCMD_1J0H and TspCMD_1SMA,were performed with the method of molecular dynamics simulation. [Resuit]These two proteins belong to glycosyl hydrolase family 13. In the structural alignment, both BsCMD_1JOH and TspCMD 1SMA showed a basic consistent of the carbon skeleton. However, the distribution of the α-helix of TspCMD_ 1SMA was tend to gathering at the center compared with BsCMD_1JOH. The analysis of substrate channels shows that there are six channels connected protein surface and the active center in BsCMD 1JOH , while eight channels in TspCMD_ISMA. The average radius of substrate tunnels are 1A and 1. 2,A for BsCMD_ 1JOH and TspCMD_ 1SMA, respectively. [Conclusion]This study provided the substrate channels of BsCMD_IJOH and TspCMD_ISMA pro teins.
出处 《广西科学》 CAS 2014年第1期12-16,共5页 Guangxi Sciences
基金 广西科技合作与交流计划项目(桂科合1347004-1) 广西科技攻关项目(桂科攻10123007-3) 广西科学院基本科研业务费项目(12YJ25SW05 13YJ22SW) 国家自然科学基金项目(21366007)资助
关键词 环糊精水解酶 底物通道 3D结构 底物运输 淀粉 cyclodextrin hydrolase, substrate channels, 3D structure, substrate transport, starch
  • 相关文献

参考文献15

  • 1Szejtli J. Introduction and general overview of cyclodex- trin chemistry[J]. Chem Rev, 1998,98(5) : 1743-1754.
  • 2Howard L R,Brownmiller C, Prior R L, et al. Improved stability of chokeberry juice anthocyanins by beta-cyclo- dextrin addition and refrigeration [J ]. J Agric Food Chem,2013,61(3):693-699.
  • 3Kayaci F, Ertas Y, Uyar T. Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsula- ted in electrospun polymeric nanofibers[J]. J Agric Food Chem ,2013,61 (34) :8156-8165.
  • 4Sanchez-Hernandez L,Serra N S,Marina M L,et al. En- aatiomeric separation of free L- and D-amino acids in hydrolyzed protein fertilizers by capillary electrophoresis tandem mass spectrometry[J]. J Agric Food Chem, 2013,61 ( 21 ) .. 5022-5030.
  • 5Nakagawa Y, Saburi W, Takada M, et al. Gene cloning and enzymatic characteristics of a novel gamma-cyclo- dextrin- specific cyclodextrinase from alkalophilic Bacillus clarkii 7364 [J]. Biochim Biophys Acta, 2008, 1784 (12) : 2004-2011.
  • 6Ferret M, Beloqui A, Golyshina O V, et al. Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome [J]. Biotechnol J, 2007,2 (2) 207-213.
  • 7Costa H, Distefano A J, Marino-Buslje C, et al. The resi- due 179 is involved in product specificity of the Bacillus circulans DF 9R cyclodextrin glycosyltransferase E J. Appl Microhiol Biotechnol,2012,94(1) .. 123-130.
  • 8Teng Y B,]iang Y l,He Y X,et al. Structural insights into the substrate tunnel of Saccharomyces cerevisiae carbonic anhydrase Ncel03[J]. BMC Struct Biol, 2009, 9:67.
  • 9Sikorski P,Sorbotten A, Horn S J,et al. Serratia marcescens ehitinases with tunnel- shaped substrate- binding grooves show endo activity and different degrees of proeessivity during enzymatic hydrolysis of chitosan [J]. Biochemistry, 2006,45(31 ) : 9566-9574.
  • 10沈中华,李卫华,许柚,刘桂霞,唐赟.细胞色素P450配体通道的研究进展[J].科学通报,2011,56(3):189-197. 被引量:1

二级参考文献24

  • 1Eggersdorfer M, Meyer J, Eches P. Use of renewable resources for non-food materials [ J ]. FEMS Microbiology Reviews,1992,103(2-4) :355-364.
  • 2Morris D J, Ahmed I. The carbohydrate economy :making chemicals and industrial materials from plant matter [M]. Washington D C: Institute of Local Self Reliance, 1992.
  • 3Birgit Kamm, Patrick R Gruber, Michael Kamm. Biorefineries-industrial processes and products [M ]. Wiley-VCH Verlag GmbH, Co K Ga A, Weiheim, Germany, 2006.
  • 4Hu X H,Wang M H,Tan T. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae [J]. The Genetics Society of AmericaGenetics , 2007, 175(3): 1479-1487.
  • 5Simona Belviso ,Laura Bardi, Alessandra Biondi Bartolini, et al. Lipid nutrition of Saccharomyces cerevisiae in winemaking[J]. Canadian Journal of Microbiology, 2004, 50 (9) : 669-674.
  • 6Steinmetz M. Carbohydrate catabolism : pathways, enzymes, genetic regulation, and evolution [ M ]// Sonenshein A L(ed). Bacillus subtilis and other Grampositive bacteria: biochemistry, physiology and molecular genetics. ASM, Washington, 1993 : 157-170.
  • 7Kitaoka M, Hayashi K. Carbohydrate-processing phosphorolytic enzymes[J]. Trends in Glycoscience and Glycotechnology, 2002, 14(75): 35-50.
  • 8Winter H, Huber S C. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes[J]. Critical Reviews in Biochemistry and Molecular Biology, 2000, 35(4): 253-289.
  • 9Vargas W, Cumino A, Salermo LS. Cyanobacterial alkaline/neutral invertases:Origin of sucrose hydrolysis in the plant cytosol[J]. Planta, 2003,216 (6): 951-960.
  • 10V'asquez-Bahena J M, Vega-Estrada J. Santiago-Hern'andez J A, et al. Expression and improved production of the soluble extracellular invertase from Zymomonas mobilis in Escherichia coli [J]. Enzyme and Microbial Technology, 2006, 40(1 ) : 61-66.

共引文献2

同被引文献1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部