由发展算子确定的具有控制不等式约束的LQCP的最优反馈控制(英文)
The Optimal Feedback Control of LQCP for Systems Defined by Evolution Operators with a Control Inequality Constraint
摘要
研究出发展算子定义的具有控制函数积分不等式约束的线性二次控制问题(LQCP),借助无约束线性二次控制系统推导出了最优控制的反馈形式.
In this paper, we consider the linear-quadratic control problem (LQCP) for systems defined byevolution operators with an inequality constraint on the control integration. We derive the feedback form of theoptimal control by the agency of the unconstrained linear-quadratic control systems.
出处
《应用泛函分析学报》
CSCD
2000年第1期1-8,共8页
Acta Analysis Functionalis Applicata
参考文献9
-
1CurtainRF,PritchardAJ.InfinitedimensionalLinearSystemsTheory[M].SpringerVerlag,Berlin,Germany,1978.
-
2GibsonJS.TheRiccatiintegralequationsforoptimalcontrolproblemsonHilbertspaces[J].SIAMJournalonControlandOptimization,1979,17:537~565.
-
3PratoGDa,IchikawaA.Quadraticcontrolforlineartimevaryingsystems[J].SIAMJournalonControlandOptimization,1990,28:359~381.
-
4BrunovskyP,KomornikJ.TheRiccatiequationsolutionofthelinearquadraticproblemwithconstrainedterminalstate[J].IEEETransactionsonAutomaticControl,AC-26,1981,398~402.
-
5BrunovskyP,KomornikJ.ThematrixRiccatiequationandthenoncontrollablelinearquadraticproblemwithterminalconstraints[J].SIAMJControlandOptimization,1983,21:280~288.
-
6EmirsajlowZ.FeedbackcontrolinLQCPwithaterminalinequalityconstraint[J].JournalofOptimizationTheoryandApplications,1989,62:387~403.
-
7EmirsajlowZ.Afeedbackforaninfinitedimensionallinearquadraticcontrolproblemwithafixedterminalstate[J].IMAJMathematicalControlandInformation,1989,6:97~117.
-
8EmirsajlowZ.Aunifiedapproachtooptimalfeedbackintheinfinitedimensionallinearquadraticcontrolproblemwithaninequalityconstraintonthetrajectoryorterminalstate[J].IMAJMathematicalControlandInformation,1991,8:179~208.
-
9MaoY.Theoptimalfeedbackcontrolofthelinear-quadraticcontrolproblemwithastateintegrationconstraint[J].JournalofOptimizationTheoryandApplications,1994,82:323~342.[10]BalakrishnanAV.AppliedFunctionalAnalysis[M].NewYork,HeidelbergBerlin,1981.
Receiveddate:1999-10-20
-
1刘则毅,毛云英,王春峰,李光泉.一类具有状态约束的线性二次最优控制问题[J].天津大学学报,1997,30(1):15-22. 被引量:2
-
2江成顺,柯敬伟,王书彬.一类非线性发展方程及其相应的发展算子[J].信息工程学院学报,1994,13(1):46-53.
-
3毛云英,等.具有状态积分约束的线性二次控制问题[J].天津大学学报,1993,26(5):17-26. 被引量:1
-
4李志刚,宋晓秋,岳田.巴拿赫空间上发展算子的非一致多项式三分性[J].山东大学学报(理学版),2013,48(12):80-85. 被引量:1
-
5韦维,项筱玲.一类非线性脉冲发展方程的最优反馈控制(英文)[J].工程数学学报,2006,23(2):333-342. 被引量:3
-
6杨帆,张庆灵,翟丁.具有状态约束的动态经济系统最优控制[J].东北大学学报(自然科学版),2004,25(5):475-477. 被引量:1
-
7贾超华,冯德兴.带非局部低阶项非线性抛物型方程的时间最优控制(英文)[J].应用泛函分析学报,2008,10(2):123-138. 被引量:1
-
8王玉林.发展算子与Sobolev型方程的反问题[J].河南科学,1993,11(2):103-112.
-
9黄献青,霍坦,刘斌,陈锦江.具有容错特性的反馈控制[J].科技通报,1995,11(6):351-355.
-
10葛新同,盛万成.伊藤-泊松型随机微分方程的线性二次控制[J].应用数学与计算数学学报,2005,19(1):75-80. 被引量:1