期刊文献+

Banach空间中增生算子T的方程f=x+Tx的迭代解(英文) 被引量:1

The Iterative Solution of the Equation f=x+Tx for an Accretive Operator T in Banach Spaces
下载PDF
导出
摘要 在具有一致凸对偶空间的Banach空间中讨论了关于增生算子T的方程f=x+Tx的迭代解,其结果推广和改进了Chidume和Zhu的结果. In this paper, we discuss the iterative solution of the equation f=x+Tx for an accreative oper-ator T in Banach spaces with a uniformly convex dual, generalize and improve Chidume and Zhu's results.
出处 《应用泛函分析学报》 CSCD 2000年第1期15-21,共7页 Acta Analysis Functionalis Applicata
关键词 一致凸对偶 局部有界 增生算子方程 迭代解 BANACH空间 accretive operator uniformly convex dual locally bounded
  • 相关文献

参考文献12

  • 1BarbuV.NonlinearSemigroupsandDifferentialEquationsinBanachSpaces[M].Noordhoff,Leyden,Netherlands,1976.
  • 2BrowderFE.NonlinearmonotoneandaccretiveoperatorsinBanachspaces[R].ProcNatAcadSciU.S.A,1968,61:388~393.
  • 3RockafellarRT.Localboundednessofnonlinearmonotoneoperators[J].MichiganMathJ,1969,16:397~407.
  • 4ChidumeCE.AnapproximationmethodformonotoneLipschitzianoperatorsinHilbertspaces[J].JAustralMathSoc(seriesA),1986,41:59~63.
  • 5ChidumeCE.Theiterativesolutionoftheequationf=x+TxforamonotoneoperatorTinLpspace[J].JMathAnalAppl,1986,166:531~537.
  • 6DotsonWG.AniterativeprocessfornonlinearmonotonicnonexpansiveoperatorsinHilbertspace[J].MathComp,1978,32:223~225.
  • 7BruckRE,JR.Theiterativesolutionoftheequationy=x+TxforamonotoneoperatorTinHilbertspace[J].BullAmerMathSoc,1973,79:1258~1262.
  • 8ZhenHe.Thefixedpointfornonexpansivemappinganditerativeconvergence[J].JEnqiMath,1990,7:67~71(InChinese).
  • 9WENGXinlong.Fixedpointinterationforlocalstrictlypseudocontractivemapping[J].ProcAmerMathSoc,1991,113:727~731.
  • 10ReichS.AniterativeprocedureforconstructingzerosofaccretivesetsinBanachspaces[J].NonlinearAnal,1978,2:85~92.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部