期刊文献+

无线传感网中一种基于自回归模型的数据收集方案

A DATA COLLECTION SCHEME IN WIRELESS SENSOR NETWORKS BASED ON AUTO REGRESSIVE MODEL
下载PDF
导出
摘要 数据收集问题是无线传感网中的一个研究热点。针对现有数据收集方法的不足,提出一种基于自回归模型的数据收集方案。首先分析感知数据稀疏性变化情况对于重构性能的影响,然后基于自回归模型对压缩感知重构问题进行建模,最后sink利用时间相关性来对重构误差进行评价,并根据重构误差要求来决定是否需要增加测量次数,从而实现对感知数据的自适应重构。仿真实验结果表明,该方法是有效的,在数据重构精度以及网络生命周期等方面要优于传统的方法。 Data collection is a hot topic in wireless sensor networks currently. Aiming at the disadvantage of existing data collection methods, we propose an AR model-based data collection scheme. First, the scheme analyses the impact of sparsity variation of sensitive data on reconstruction performance, and then models the compressed sensing reconstruction based on the AR model, finally, the sink evaluates the reconstruction error using the temporal correlation, and decides whether or not to increase the times of measurements according to the requirements of reconstruction error, so as to realise the adaptive reconstruction of sensing data. Simulation experimental results show that our method is effective, and is superior to traditional methods in terms of the data reconstruction accuracy and the lifecycle of network.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第3期99-103,共5页 Computer Applications and Software
基金 国家自然科学基金项目(51074097) 广西重大科技攻关项目(桂科攻12118017-6) 广西自然科学基金项目(2011GXNSFA018165) 广西教育厅科研重点项目(201102ZD034)
关键词 无线传感网 数据收集 自回归模型 测量次数 重构精度 网络生命周期 Wireless sensor networks Data collection Auto regressive (AR) model Measurement times Reconstruction accuracy Lifecycle of network
  • 相关文献

参考文献11

二级参考文献63

  • 1张重庆,李明禄,伍民友.数据收集传感器网络的负载平衡网络构建方法[J].软件学报,2007,18(5):1110-1121. 被引量:29
  • 2Heinzelman W R, Chandrakasan A, and Balakrishnan H. Energy-efficient communication Protocol for wireless micro-sensor network [C]. Proc. of the 33rd Intl Conf on System Science, Washington, DC, 2000: 1-10.
  • 3Lindsey S and Raghavendra C S. PEGASIS: power-efficient gathering in sensor information system [C]. Proc. of the IEEE Aerospace Conf, San Francisco, 2002: 1-6.
  • 4Tan H O. Power efficient data gathering and aggregation in wireless sensor networks [C]. SIGMOD Record, New York, 2003: 66-71.
  • 5Qi Hai-rong, Xu Ying-yue, and Wang Xiao-ling. Mobile- agent-based collaborative signal and information processing in sensor networks [J]. Proceedings of the IEEE, 2003, 91(8): 1172 -1183.
  • 6Zhang Shu-kui, Cui Zhi-ming, Gong Sheng-rong, and Sun Yong. Directed diffusion algorithm based on cooperative mobile agent for wireless sensor networks [C]. The 4th International Conference on Wireless Communications,Networking and Mobile Computing, Dalian, 2008: 1-6.
  • 7Malik H and Shakshuki E. Data dissemination in wireless sensor networks using software agents [C]. The 21st International Symposium on High Performance Computing Systems and Applications (HPCS2007), Saskatoon, Saskatchewan, Canada, 2007: 28.
  • 8Ma Zhan-shan and Krings A W. Spatial distribution patterns power law, and the agent-based directed diffusion sensor networks [C]. The 6th IEEE International Conference on Pervasive Computing and Communications, Mazmheim, Germany, 2008: 596-601.
  • 9Chen Min, Kwon Taekyoung, and Choi Yanghee. Data dissemination based on mobile agent in wireless sensor networks [C]. The Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN'05), Sydney, Australia, 2005: 527-529.
  • 10Jeong Hee-jin, Nam Choon-sung, Jeong Yi-seok, and Shin Dong-ryeol. A mobile agent based LEACH in wireless sensor networks [C]. The 10th International Conference on Advanced Communication Technology, Phoenix Park,Korea, 2008: 75-78.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部