期刊文献+

基于稀疏表示的自适应图像融合方法研究 被引量:4

STUDY ON SPARSE REPRESENTATION BASED ADAPTIVE IMAGE FUSION METHODS
下载PDF
导出
摘要 图像融合是将两幅或两幅以上由不同传感器在同一时间或不同时间获取的关于某个具体场景的图像或图像序列信息融合为一幅图像,使得融合图像更有利于人们分析和理解。基于目前经典的图像融合方法的基础,提出一种新的基于稀疏表示的自适应图像融合算法。首先根据训练的超完备字典将两幅源图像表示为两组稀疏系数,然后根据系数的特征自适应地选取融合规则对系数进行融合,最后由融合系数和字典进行重构得到融合图像。该算法在稀疏表示的过程中能够有效地避免产生块效应且能去除噪声,从而提高图像质量。实验结果表明该方法在主观和客观评价上均优于其他算法。 Image fusion means combining two or more images or image sequence information about one particular scene taken by different sensors either simultaneously or unsimultaneously, so that the fused image is more analyzable and comprehensible. On the basis of present classical image fusion methods, the paper proposes a new sparse representation based adaptive image fusion algorithm. The method firstly presents two source images as two groups of sparse coefficients by trained over-completeddictionary; then according to coefficient characteristics adaptively chooses fusion rules to fuse coefficients; finally reconstructs fused coefficients and dictionary to obtain the fused image. During sparse representation process the algorithm can effectively avoid the generation of block-effect and can eliminate noises; therefore the image quality is improved. Experimental results show that the proposed method is superior to the other algorithms either at subjective or objective evaluations.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第3期203-206,245,共5页 Computer Applications and Software
基金 航空科技重点实验室开放基金项目(ZK201029002) 南昌航空大学研究生创新基金项目(YC2011042)
关键词 稀疏表示 图像融合 超完备字典 自适应 Sparse representation Image fusion Ovet-completed dictionary Adaptive
  • 相关文献

参考文献10

  • 1Mallat S G, Zhang Z. Matching Pursuits With Time-Frequency Diction- aries [ J ]. IEEE Transactions on Signal Processing, 1993,4 ( 12 ) : 3397 -3415.
  • 2Pajares G, Cruz J. A wavelet-based image fusion tutorial [ J 1. Pattern Recognit ,2004,37 (9) : 1855 - 1872.
  • 3温黎茗,彭力,徐红.基于NSCT和PCNN的遥感图像融合算法[J].计算机工程,2012,38(11):196-198. 被引量:7
  • 4QU Xiao-Bo,YAN Jing-Wen,XIAO Hong-Zhi,ZHU Zi-Qian.Image Fusion Algorithm Based on Spatial Frequency-Motivated Pulse Coupled Neural Networks in Nonsubsampled Contourlet Transform Domain[J].自动化学报,2008,34(12):1508-1514. 被引量:121
  • 5Aharon M,Elad M, Bruckstein A. K-SVD:An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation [ J ]. IEEE Trans- actions on Signal Processing,2006,54( 11 ) :4311 -4322.
  • 6Lin P L,Huang P Y. Fusion method based on dynamic-segmented mor- phplpgical wavelet or cut and paste for multifocus images [ J ]. Signal Process,2008,88(6) :1511 - 1527.
  • 7Yang B, Li S T. Multifocus Image Fusion and Restoration With Sparse Representation[ J ]. IEEE Transactions on Instrumentation and Meas- urement,2010,59(4) :884-892.
  • 8Yu N N, Qiu T S. Image Features Extraction and Fusion Basedon Joint Sparse Representation[J]. IEEE Journal of Selected Topics in Signal Processing,2011,5 (5) : 1074 - 1082.
  • 9Yang B, Li S T. Pixel-level image fusion with simultaneous orthogonal matching pursuit [ J ]. Information Fusion,2013 ( 13 ) : 10 - 19.
  • 10Ludusan C, Lavialle O. Multifocus image fusion and denoising:A varia- tional approach [ J ]. Pattern Recognition Letters, 2012, 33:1388 - 1396.

二级参考文献9

  • 1付炜.基于特征级数据融合的遥感图像重构模式研究[J].电子学报,2005,33(6):1143-1145. 被引量:5
  • 2ZHENG Yong-An SONG Jian-She ZHOU Wen-Ming WANG Rui-Hua.False Color Fusion for Multi-band SAR Images Based on Contourlet Transform[J].自动化学报,2007,33(4):337-341. 被引量:2
  • 3Choi M. A New" Intensity-hue-saturation Fusion Approach to Image Fusion with a Tradeoff Parameter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1672-1682.
  • 4Yang Jian, Zhang D. Two-dimensional PCA: A New Approach to Appearance-based Face Representation and Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
  • 5Pajares G, de la Cruz J M. A Wavelet-based Image Fusion Tutorial[J]. Pattern Recognition, 2004, 37(9): 1855-1872.
  • 6Do M N, Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation[J]. IEEE Transactions on Image Processing, 2005, 14( 12): 2091-2106.
  • 7da Cunha A L, Zhou Jianping, Do M N. The Non-subsampled Contourlet Translbrm: Theory, Design, and Applications[J]. IEEE Transactions on Image Processing, 2006, 15( 10): 3089-3101.
  • 8Eckhorn R, Reitboeck H J, Arndt M, et al. Feature Linking via Synchronization Anlong Distributed Assemblies: Simulations of Results from Cat Visual Cortex[J]. Neural Computing, 1990, 2(3): 293-307.
  • 9陈浩,朱娟,刘艳滢,王延杰.利用脉冲耦合神经网络的图像融合[J].光学精密工程,2010,18(4):995-1001. 被引量:13

共引文献126

同被引文献44

  • 1苗启广,王宝树.一种自适应PCNN多聚焦图像融合新方法[J].电子与信息学报,2006,28(3):466-470. 被引量:36
  • 2楚恒,朱维乐.基于DCT变换的图像融合方法研究[J].光学精密工程,2006,14(2):266-273. 被引量:30
  • 3TANG J S.A contrast based image fusion technique in the DCT domain[J].Digital Signal Processing,2004,14(3):218-226.
  • 4PAJARES G.,CRUZ J M.A wavelet - based image fusion tutorial[J].Pattern Recognition,200437(9):1855-1872.
  • 5CHOI M,KIM R Y,NAM M R,et al.Fusion of multispectral and panchromatic satellite images using the Curvelet transform[J].IEEE Trans.Geoscience and Remote Sensing Letters,2005.2(2):136-140.
  • 6JlANG Y,WANG M H.Image fusion with morphological component analysis[J].Information Fusion,2014(18):107-118.
  • 7STARCK J L,ELAD M.DONOHO D.Redundant multiscale trans-fonns and their application for morphological component analysis[J].Advances in Imaging and Electron Physics,2004,132(82):287-348.
  • 8STARCK J L,ELAD M.DONOHO D.Image decomposition via the combination of sparse representation and a variational approach[J].IEEE Trans.Image Processing,2005.14(10):1570-1582.
  • 9ELAD M.STARCK J L,QUERRE P,et al.Donoho.simultaneous cartoon and texture image inpainting using morphological component analysis(MCA)[J].Appl.Comput.Harmon.Anal,2005.(19):340-358.
  • 10FADlLI M J.STARCK J L.An algorithm for sparse representation-based image inpainting[C]//Proc.IEEE International Conference on Image Processing.Genoa,Italia:IEEE Press.2005:61-63.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部