摘要
在分析和研究C5算法中连续属性处理的必要性及C5算法中离散化方法的不足后,采用基于粗糙集理论-信息熵-可辨识矩阵的离散化的方法(RSIEDM)进行离散化。该方法利用粗糙集、信息熵和可辨识矩阵能更合理、更准确地对连续属性进行离散化,使创建的决策树具有更好的准确率。在优化雷电灾害统计和评估雷电灾害导致的损失应用中,该算法取得了较好的效果。
After analysing and studying the necessity of continuous attributes processing in C5 algorithm and the shortcomings of discretisation method in C5 algorithm, we propose to adopt a discretisation method based on rough set theory-information entropy-discernible matrix discretisation (RSIEDM). By making use of the above three, the method can more reasonably and accurately discretise the continuous attributes, and enables the created decision tree to have better accuracy. Applying the method to optimising the statistics of lightning disaster and evaluating the losses of lightning disaster, the algorithm achieves desirable result.
出处
《计算机应用与软件》
CSCD
北大核心
2014年第3期259-262,共4页
Computer Applications and Software
基金
天津自然科学基金项目(10JCZDJC2340 0)
2012年度普通高校研究生科研创新计划项目(CXLX12_0515)
关键词
决策树
离散化
粗糙集
信息熵
可辨识矩阵
Decision tree Discretisation Rough set Information entropy Discernible matrix