期刊文献+

基于有理Haar小波求解分数阶第2类Fredholm积分方程 被引量:5

Numerical Solution of Fractional Fredhlom Integral Equation of the Second Kind Based on the Rationalized Haar Wavelet
下载PDF
导出
摘要 利用有理Haar小波函数数值求解分数阶第2类Fredholm积分方程,用有理Haar小波定义及性质与配置法给出有理Haar小波积分算子矩阵,将积分方程转化为代数方程组进行求解.最后通过误差分析和数值算例将分数阶积分方程的精确解和用Haar小波所得数值解进行比较,表明了该算法具有较高的精确度. The rationalized Haar functions are used to solve the solution of fractional order Fredholm integrat equa- tion of the second kind. The integral equation can be reduced to a system of algebraic equations by using ration- ahzed Haar wavelet and collection method. Finally,the numerical solution of fractional integral equation with exact solution and the numerical solutions using Haar wavelet are compared by error analysis and numerial examples. The result shows that the algorithm has high accuracy.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2014年第1期47-50,82,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11261041)资助项目
关键词 有理Haar小波 分数阶 第2类Fredholm积分方程 配置法 rationalized Haar wavelet fractional order Fredhlom integral equation of the second kind collocation method
  • 相关文献

参考文献12

  • 1张建平,韩惠丽,潘学锋.解线性Fredholm积分-微分方程组的Legendre方法(英文)[J].科学技术与工程,2009,9(24):7283-7287. 被引量:2
  • 2秦君琴,何力军.含Cauchy核的奇异积分方程的3次样条小波解法[J].江西师范大学学报(自然科学版),2011,35(3):313-315. 被引量:2
  • 3Lepik U. Solving fractional integral equations by the Haar wavelet method[J]. Appl Math Comput, 2009 , 214 ( 2) : 468-478.
  • 4Saeedi H, Mollahasani N , Moghadam M M, et al. An operation Haar wavelet method for solving fractional Volterra equations[J]. Int J Appl Math Compute Sci,2011 ,21 (3): 535-547.
  • 5Li Yuanlu, Zhao Weiwei. Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations[J]. Appl Math Comput,2010,216(8) :2276-2285.
  • 6Li Yuanlu. Solving a nonlinear fractional differential equation using Chebyshev wavelets[J]. Commun Nonlinear Sci Numer Simul ,2010,15 (9) :2284-2292.
  • 7Saeedi H, Moghadam M M, Mollahasani N, et al. A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order[J]. Commun Nonlinear Sci Numer Simulat,2011 , 16( 3) : 1154-1163.
  • 8Zhu Li, Fan Qibin. Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet[J]. Commun Nonlinear Sci N umer Simulat, 2012,17(6) :2333-2341.
  • 9Maleknejad K, Mirzaee F. Using rationalized Haar wavelet for solving linear integral equations[J]. Applied Mathematics and Computation ,2005,160(2) :579-587.
  • 10Maleknejad K, Mirzaee F , Abbasbandy S. Solving linear integro-differential equations system by using rationalized Haar functions method[J]. Appl Math Comput ,2004,155 (2) :317-328.

二级参考文献16

  • 1王先彪.柯西奇异积分的区间小波方法[J].宁夏大学学报(自然科学版),1996,17(1):84-86. 被引量:2
  • 2Kajani M T, Ghasemi M, Babolian E. Numerical solution of linear integro-differential equation by using sine-cosine wavelets. Appl Math Comput, 2006 ; 180 : 569--574.
  • 3Han Danfu, Shang Xufeng. Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration. Applied Mathematics and Computation, 2007 ; 194 : 460-466.
  • 4Avudainayagam A, Vano C. Wavelet-Galerkin method for integrodifferential equations, Appl Numer Math, 2000 ;32 : 247--254.
  • 5Maleknejad K, Mirzaee F, Abbasbandy S. Solving linear integrodifferential equations system by using rationalized Haar functions method. Appl Math Comput,2004 ; 155 : 317--328.
  • 6Maleknejad K, Kajani M T. Solving linear integro-differential equation system by Galerkin methods with hybrid functions. Applied Mathematics and Computation,2004 ; 159 : 603--612.
  • 7Maleknejad K,Kajani M T, Mahmoudi Y. Numerical solution of linear Fredholm and Voherra integral equations of the second kind by using Legendre wavelets. Kybernetes, 2003 ; 32(9/10) : 1530--1539.
  • 8Razzaghi M, Yousefi S. The Legendre wavelets operational Matrix of integration. International Journal of Systems Science, 2001; 32: 500--502.
  • 9Malekneijad K, Mirzaee F. Using rationalized Harr wavelets for solving linear intergral equations [J]. Appl Math Comp, 2005, 160(2): 579-587.
  • 10Shen Youjian, Lin Wei. A wavelet-Galerkin methods for a hy- persingular integral equation system [J]. Complex Variables and Elliptic Equations: An International Journal, 1997, 52(10/11): 993-1006.

共引文献2

同被引文献26

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部