摘要
讨论了变系数微分代数方程的数值解.首先给出变系数微分代数方程的系数矩阵Drazin逆的求法,然后研究其差分格式上的数值解,最后利用Drazin逆的方法和隐式RK方法对一类变系数微分代数方程进行了研究,并给出了相应的数值试验,结果表明Drazin逆的求解效果较好,但求解过程比较复杂.
The numerical treatment of time varying differential algebraic equations is dicussed. Drazin inverse is giv- en to solve the time varying differential algebraic equations. This method is tested on a index-1 differential algebraic system. According to the obtained solutions,it is inferred that Drazin inverse is a powerful tool for solving this kind of problems. It is shown that the precision of the Drazin inverse method is higher than the Radau IIA method, but the Drazin inverse method is implemented more complex than the Radau IIA method.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2014年第1期54-57,共4页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
河南省科技厅(132300410391)资助项目