期刊文献+

一类变系数微分代数方程的数值解 被引量:1

The Numerical Treatment of Time Varying Differential Algebraic Equations
下载PDF
导出
摘要 讨论了变系数微分代数方程的数值解.首先给出变系数微分代数方程的系数矩阵Drazin逆的求法,然后研究其差分格式上的数值解,最后利用Drazin逆的方法和隐式RK方法对一类变系数微分代数方程进行了研究,并给出了相应的数值试验,结果表明Drazin逆的求解效果较好,但求解过程比较复杂. The numerical treatment of time varying differential algebraic equations is dicussed. Drazin inverse is giv- en to solve the time varying differential algebraic equations. This method is tested on a index-1 differential algebraic system. According to the obtained solutions,it is inferred that Drazin inverse is a powerful tool for solving this kind of problems. It is shown that the precision of the Drazin inverse method is higher than the Radau IIA method, but the Drazin inverse method is implemented more complex than the Radau IIA method.
作者 任磊 王文武
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2014年第1期54-57,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 河南省科技厅(132300410391)资助项目
关键词 变系数微分代数方程 DRAZIN逆 有限算法 Radau IIA time varying differential algebraic equations Drazin inverse infinite algorithm Radau IIA
  • 相关文献

参考文献10

  • 1Brenan K E, Campbell S L, Petzold L R. Numerical solution of initial-value problems in differential-algebraic e- quations[M]. New York: North-Holland, 1989.
  • 2Campbell S L. Singular system of differential equations[M]. San Francisco : Pitman Publishing Ltd, 1980.
  • 3Campbell S L. Singular system of differential equations II[M]. San Francisco: Pitman Publishing Ltd, 1982.
  • 4Campbell S L. One canonical form for higher index linear time-varying singular systems[J]. Circuits Syst Signal Process,1983,2(3) :311-326.
  • 5Campbell S L, Meyer CD, Rose J R. Generalized inverse of linear transformations[M]. Great Britain: Pitman, 1979.
  • 6Gao Jing , Wang Guorong. Two algorithms of Drazin inverse of a polynomial matrix[J]. Journal of Shanghai Normal University-Science Edition,2002 ,31 (2) :31-38.
  • 7Ascher U M,Petzold L R. Projected implicit Runge-Kutta methods for differential-algebraic equations[J]. SIAM J Numer Anal, 1991 ,28( 4) : 1097-1120.
  • 8Brenan K E, Compbell S L, Petzold L R. Numerical solution of initial-value problem in differential-algebraic equations[M]. New York : Elsevier , 1989.
  • 9任磊,孙乐平.一类奇异微分代数系统的数值解[J].江西师范大学学报(自然科学版),2012,36(5):491-494. 被引量:2
  • 10Celik E. On the numerical solution of differential-algebraic equation with index-2[J]. Appl Math Comput, 2004, 156 (2) :541-550.

二级参考文献11

  • 1Campbell S L V. Singular systems of differential equations I [M]. Great Britian: Pitman Publishing Co, 1980.
  • 2Campbell S L V. Linear systems of differential equations withsingular coefficients [J]. SIAM J Math Anal, 1997, 8(6): 1057-1066.
  • 3Campbell S L V. Singular systems of differential equations Ⅱ [M]. Great Britian: Pitman Publishing Co, 1982.
  • 4Gear C W. Simultaneous numerical solution of differential-algebraic equations [J]. IEEE Trans Circuit Theory, 1971, 18(1 ): 89-95.
  • 5Gear C W. Numerical initial value problems in ODEs [J]. Pren- tice-Hall, Engelwood Cliffs, NJ, 1971, 7(1): 77-90.
  • 6Gear C W. Differential-algebraic equations, indices, and integral equations [J]. SIAM J Numer Anal, 1990, 27(6): 1527-1534.
  • 7Vanani S K, Aminataei A. Numerical solution of differential al- gebraic equations using a multiquadric approximation scheme [J] Mathematical and Computer Modeling, 2011, 53(5/6): 659-666.
  • 8Celik E, Bayram M. On the numerical solution of differen- tial-algebraic equations by Pade series [J]. Appl Math Comput, 2003, 137(1): 151-160.
  • 9Brenan K E, Campbell S L V, Petzold L R. Numerical solution of initial-value problems in differential-algebraic equations [M]. North-Holland: Society for Industrial and Applied Mathematics, 1989.
  • 10Peter K, Volker M. Differential-algebraic equations: analysis and numerical solution [M]. Ziirich: European Mathematical Society, 2006.

共引文献1

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部