期刊文献+

马铃薯和拟南芥GAPC酶基因的克隆及分析 被引量:2

Cloning and analysis of the cytosolic glyceraldehyde 3-phosphate dehydrogenase( GAPC) gene from Solanum tuberosum and Arabidopsis thaliana
下载PDF
导出
摘要 胞质三磷酸甘油醛脱氢酶(GAPC)是糖酵解中的关键酶,近年的研究表明其对盐、低温、高温、氧化、高渗、低磷等多种逆境胁迫均有响应。本实验采用RT-PCR,分别从马铃薯和拟南芥中克隆GAPC的编码区序列(CDS),并作生物信息学比较,同时构建2个基因的植物表达载体。结果表明,StGAPC和AtGAPC2的CDS长度均为1017bp,相似性84%,编码338个氨基酸,相似性为92%。蛋白分子量分别为36.65和36.91 kDa,理论等电点为6.34和6.67,均属稳定蛋白;三级结构预测表明两者和水稻(2e5rC)GAPC蛋白结构相似,具有GAPC保守功能域。多种植物GAPC基因的序列进化分析表明同科属植物的同源性较高可归于同一分支,与现有的分类系统相对应。以pBI121为基础载体,构建了由CaMV35S启动GAPC基因的植物表达载体,导入农杆菌EHA105,经PCR检测确定获得阳性克隆。本研究为获得转GAPC基因的材料并进一步研究GAPC在逆境中的功能奠定基础。 Cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPC) takes part in glycolysis and is a classical housekeeping enzyme in both prokaryotes and eukaryotes.Increasing evidence indicates that GAPC is involved in various plant abiotic and biotic stress responses such as salt,low phosphate,reactive oxygen species (ROS) and heat in phytophthora infestans.The AtGAPC2 gene has been found in responses to low phosphate and osmotic stress in Arabidopsis.Analysis of sequences and protein structure of GAPC could help in studies of the function and mechanisms of GAPC acting in plant stress resistance.The fragments encoding GAPC were obtained from Solanum tuberosum (StGAPC) and Arabidopsis thialiana (AtGAPC2) seedlings by reverse transcription polymerase chain reaction (RT-PCR).The CDS lengths of StGAPC and AtGAPC2 were 1017 bp,encoding a protein subunit of 338 amino acids.Bioinformatics analysis demonstrated that the StGAPC and AtGAPC2 had 84% similarity in nucleotide sequence and 92% similarity in amino acid sequence.Molecular weights of the proteins were 36.65 and 36.91 kDa,the PI (theoretical isoelectric point) were 6.34 and 6.67,and both of them had stable protein structures.The 3D structures of StGAPC and AtGAPC2 were predicted by homology comparative modeling in the Swiss-Model,and showed that the 3D structures were highly similar to Oryza sativa GAPDH C chain (2e5rC).Predicted proteins contained conserved GAPC domains which included an NAD binding domain constructed by βαβαβ Rossmann coil and a catalyzed domain in the saddle super secondary structure composed of seven β foldings.CDS sequences of GAPC showed that the same family of plants has a high homology attributed to the same branch in the evolutionary tree and this evolutionary relationship corresponded to the existing classification system.pBI121 was constructed as a base vector and the gene expression vector in the plant was driven by a CaMV35S promoter.The recombinant vector was introduced into Agrobacterium strain EHA105 and positive clones were determined by PCR.This research is a basis to obtain transgen ic materials and for further study on the function of GAPC.
出处 《草业学报》 CSCD 北大核心 2014年第1期239-247,共9页 Acta Prataculturae Sinica
关键词 马铃薯 拟南芥 胞质3-磷酸甘油醛脱氢酶 基因克隆 生物信息学分析 Solanum tuberosum Arabidopsis thaliana cytosolic glyceraldehyde 3-phosphate dehydrogenase gene cloning bioinformatic analysis
  • 相关文献

参考文献26

  • 1Cerff R, Chambers S E. Subunit structure of higher plant glyceraldehyde 3-phosphate dehydrogenases (EC 1.2.1.12 and EC1 2.1.13)[J]. Journal of Biological Chemistry, 1979, 254: 6094-6098.
  • 2Plaxton W C. The organization and regulation of plant glycolysis[J], Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 185-214.
  • 3Brinkmann H, Martinez P, Quigley F, et al. Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceral- dehyde-a-phosphate dehydrogenase from maize[J], Journal of Molecular Evolution, 1987, 26(4):320-328.
  • 4Russell D A, Sachs M M. Differential expression and requence analysis of the maize g!yceraldehyde-3-phosphate dehydrogen- ase gene family[J]. The Plant Cell, 1989, 1(8): 793-803.
  • 5Shih M C, Heinrich P, Goodman H M. Cloning and chromosomal mapping of nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate-dehydrogenase from ArabidopsJs thaliana[J]. Gene, 1991, 104(2) : 133-138.
  • 6肖川,刘晓斐,詹树萱,王顺德,曹凯鸣.水稻甘油醛-3-磷酸脱氢酶cDNA结构分析和分子进化[J].自然科学进展(国家重点实验室通讯),1998,8(4):411-419. 被引量:7
  • 7李晓泽,刘关君,杨传平.西伯利亚蓼甘油醛-3-磷酸脱氢酶基因的cDNA克隆与序列分析[J].植物生理学通讯,2007,43(1):41-48. 被引量:20
  • 8Yang Y J, Hawk B K, Peng H P, et al. Stress responses and metabolic regulation of clyceraldehyde-3-phosphate dehydrogen- ase genes in Arabidopsis[J]. Plant Physiology, 1993, 101 : 209-216.
  • 9Penaloza E, Gutierrez A, Martinez J, et al. Differential gone expression in proteoid root clusters of white tupin (Lupinus al- bus)[J]. Plant Physiology, 2002, 116: 28-36.
  • 10WANG XiYao CHEN YiFang ZOU JunJie WU WeiHua.Involvement of a cytoplasmic glyceraldehyde-3-phosphate dehydrogenase GapC-2 in low-phosphate-induced anthocyanin accumulation in Arabidopsis[J].Chinese Science Bulletin,2007,52(13):1764-1770. 被引量:2

二级参考文献168

共引文献80

同被引文献26

  • 1刘鸿雁,黄建国,魏成熙,周焱.磷高效基因型玉米的筛选研究[J].土壤肥料,2004(5):25-29. 被引量:31
  • 2刘亚,李自超,米国华,张洪亮,穆平,王象坤.水稻耐低磷种质的筛选与鉴定[J].作物学报,2005,31(2):238-242. 被引量:52
  • 3刘建中,李振声,李继云.利用植物自身潜力提高土壤中磷的生物有效性[J].生态农业研究,1994,2(1):16-23. 被引量:190
  • 4李继云,刘秀娣,周伟,孙建华,童依平,刘文杰,李振声,王培田,姚树江.有效利用土壤营养元素的作物育种新技术研究[J].中国科学(B辑),1995,25(1):41-48. 被引量:164
  • 5门福义 刘梦芸.马铃薯栽培生理[M].北京:中国农业出版社,1993,12.184-186.
  • 6王彩华 宋连天.模糊论方法学[M].北京:中国建筑工业出版社,1988..
  • 7Raghothama K G. Phosphate acquisition [J]. Annual Re- views of Plant Physiology and Plant Molecular Biology, 1999, 50: 665-693.
  • 8Syers J K, Johnston A E, Curtin D. Eficiency of soil and fer- tilizer phosphorus use [J]. FAO Fertilizer and Plant Nutri- tion Bulletin, 2008; 27-44.
  • 9Xiao K, Maria H, Wang Z Y. Transgenic expression of a no- vel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis [J]. Planta, 2005, 222 (1) : 27-36.
  • 10Shen Y O, Wang H N, Pan G T. Improving inorganic phos- phorus content in maize seeds by introduction of phytase gene [J]. Biotechnology, 2008, 7(2): 323-327.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部