期刊文献+

金融风险的最坏VaR方法与投资组合优化

Worst-case VaR in Financial Risk Measure and Portfolio Optimization
原文传递
导出
摘要 在股价及其走势均不确定的情况下,采用最坏VaR方法,对投资的潜在损失进行最保守的度量,并得到其等价的优化形式为一个二阶锥优化问题.接着考虑相应的投资组合优化问题:如何选择合适的头寸,使得当股票组合的期望收益达到给定水平的情况下,风险最低,即最坏VaR值最小,最后对模型进行实证分析. In this work, we consider the worst-case Value-at-Risk (VaR) as a risk mea- sure without the information on prices or tendencies of stocks. We obtain a result that its tractable and equivalent representation can be converted to an second-order cone pro- gramming. Then we investigate a corresponding portfolio selection problem, that is, for a given level of expected return, how to allocate the capital so that the the worst-case VaR is minimized. Furthermore, we report some numerical experiments for portfolio optimization.
作者 罗桂美
出处 《数学的实践与认识》 CSCD 北大核心 2014年第5期15-20,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(10771057) 广东金融学院校级科研项目(13XJ02-10)
关键词 最坏VaR 二阶锥优化 投资组合优化 Worst-case VaR second-order cone programming portfolio optimization
  • 相关文献

参考文献15

  • 1Markowitz H M. Portfolio selection [J]. Journal of Finance, 1952, 7: 77-91.
  • 2Markowitz H M. Portfolio Selection: Efficient diversification of investment [M]. New York: John Wiley & Sons, 1959.
  • 3Linsmeier T J and Pearson N D. Risk measurement: An introduction to value-at-risk [C]//Technical Report 96-04,.
  • 4OFOR, University of Illinois, Urbana-Champaign, IL. Artzner P, Delbaen F, Eber J M and Heath D. Thinking coherently [J]. Risk, 1997, 10: 68-71.
  • 5Black F and Litterman R. Global portfolio.
  • 6E1 Ghaoui L and Lebret H. Robust solutions to least-squares problems with uncertain data [J]. SIAM Journal on Matrix Analysis and Applications, 1997, 18: 1035-1064.
  • 7El L Ghaoui, Oks M and Oustry F. Worst-case Value-at-Risk and robust portfolio optimization: A conic programming approach [J]. Operations Research, 2003, 51: 543-556.
  • 8Lobo M S, Boyd S. The worst-case risk of a portfolio[C]//Technical Report, 1999.
  • 9Rockafellar R T, Uryasev S. Optimization of conditional Value-at-Risk [J]. The Journal of Risk, 2000, 2: 21-41.
  • 10P. Krokhmal, J. Palmquist and S. Uryasev. Portfolio optimization with conditional value at risk objective and constraints [J]. The Journal of Risk, 2002, 4: 273-291.

二级参考文献94

  • 1Markowitz H M. Portfolio selection[J]. Journal of Finance, 1952, 7: 77-91.
  • 2Modigliani F, Miller M. The cost of capital, corporation finance, and the thoery of investment[J]. American Economic Review,1958, 48: 261-297.
  • 3Sharpe W. Capital asset prices: A theory of market equilibrium under conditions of risk[J]. Journal of Finance, 1964, 19: 425-442.
  • 4Lintner J. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets[J]. Review of Economics and Statistics, 1965, 47: 13-37.
  • 5Mossin J. Equilibrium in a capital asset market[J]. Econometrica, 1966, 34: 768-783.
  • 6Fama E F. The behavior of stock prices[J]. Journal of Business, 1965, 37: 34-105.
  • 7Fama E F. Efficient capital markets: Ⅱ[J]. Journal of Finance, 1991, 46: 1575-1617.
  • 8Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81: 637-654.
  • 9Merton R C. The theory of rational option pricing[J]. Bell Journal of Economics and Management Science, 1973, 4: 141-183.
  • 10Ross S A. The arbitrage theory of capital asset pricing[J]. Journal of Economic Theory, 1976, 13: 341-360.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部