期刊文献+

求解社区项目博弈的一种改进贪婪算法研究

Study on an Improved Greedy Algorithm Applied in Benefit Allocating of the Community
原文传递
导出
摘要 针对社区项目博弈的一般模型,应用贪婪算法求解项目博弈的近似社会最优指派,给出参与者重加权分配机制,证明贪婪算法求得的指派恰好是非合作项目博弈的一个纳什均衡.定义控制参数,给出边际效益后悔值定义,利用后悔值改进了贪婪算法,证明基于后悔值贪婪算法求得的指派是非合作项目博弈的一个纳什均衡.通过数值仿真实验发现,与模拟退火算法比较,贪婪算法能够得到更好的社会效益,而且基于后悔值贪婪算法比贪婪算法得到更好的社会效益. Greedy algorithms can be used to solve the general model for project game in the community. The obtained assignment approximates social optimality. In this paper, we present a mechanism to reweight the players, and proved that the assignment obtained using greedy algorithm is Nash equilibrium with the given weights. In addition, after defining regret value and two scale parametersσand/β, we propose advanced greedy algorithm based on regret value. Numerical experiment results show that the presented algorithm can get better results.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第5期107-112,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金"大众生产社区的结构 行为与绩效研究"(71273093)
关键词 分配机制 贪婪算法 基于后悔值贪婪算法 参与者重加权 纳什均衡 mechanisms for allocating greedy algorithm greedy algorithm based on regretvalue re-weighting players Nash equilibrium
  • 相关文献

参考文献11

  • 1Merton, Robert K. The Matthew Effect in Science. Science-the reward and communication systems are considered[J]. Science, 1968(159): 56-63.
  • 2Merton, Robert K. the Matthew effect in science, II: Cumulative advantage and the symbolism of intellectual property[J]. Isis, 1988, 79: 607-623.
  • 3Strevens M. The role of the priority rule in science[J]. The Journal of Philosophy, 2003, 100(2): 55-79.
  • 4Strevens M. The role of the matthew effect in science[J]. Studies in History and Philosophy of Science Stud Hist Phi[ Sci, 2006, B7: 159-170.
  • 5Papadimitriou C H, Yannakakis M. On complexity as bounded rationality[C]//In Proceedings of the Twenty-Sixth Annual ACM Symposium on the TheOry of Computing, 1994: 726-733.
  • 6Korilis Y, and Lazar A. On the existence of equilibria in noncooperative optimal flow control[J]. Journal of the ACM, 1995, 42(3): 584-613.
  • 7E. Koutsoupias, C. Papadimitriou. Worst-case equilibria[C]//In Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, 1999: 404-413.
  • 8Awerbuch B, Azar Y, Richter Y, et al. Tradeoffs in worst-case equilibria[J]. Theor Comput Sci, 2006, 361(2): 200-209.
  • 9Azar Y, Jain K, Mirrokni V. (Almost) optimal coordination mechanisms for unrelated machine scheduling[C]//In Proc The 19th SODA, January, 2008: 323-332.
  • 10Pin-Yan Lu Chang-Yuan YuWorst-case Nash equilibria in restricted routing[J]. Computer Science and Technology July, 2012, 27(4): 710-717.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部