期刊文献+

带有梯度项的退化抛物方程的爆破

Blow-up for a Degenerate Parabolic Equation with a Gradient Term
原文传递
导出
摘要 考虑了带有梯度项和变指标项的非线性退化抛物方程u_t=△u^m+μ|▽u|^(p(x))(μ>0)非负解的爆破性质.使用特征函数方法和不等式技巧,得到了其齐次Dirichlet问题非负解在有限时刻爆破的充分条件. The blow-up behavior of nonnegative solutions is studied to the following non- linear degenerate parabolic equation:(μ〉O)with a gradient term and variable exponent. By using the eigenfunction method and inequality technique on it, the sufficient condition for blow-up nonnegative solutions of the equation with homogeneous Dirichlet boundary condition is obtained.
作者 唐树乔
出处 《数学的实践与认识》 CSCD 北大核心 2014年第5期227-231,共5页 Mathematics in Practice and Theory
基金 中央财政支持项目省级特色专业(亳州师专数学教育专业)建设点 安徽省自然科学课题(KJ2013Z217,KJ2011Z258) 江苏省基础研究计划(自然科学基金)-面上项目(BK2010404) 亳州师专科研课题(BZSZKYXM201111)
关键词 梯度项 变指标 退化抛物方程 爆破 gradient term variable exponent degenerate parabolic equation blow-up
  • 相关文献

参考文献13

  • 1Kardar M, Parisi G, Zhang Y C. Dynamic Scaling of Growing Interfaces[J]. Phys Rev Lett, 1986, 56: 889-892.
  • 2Lions P L. Generalized solutions of Hamilton-Jacobi equations[J]. Research Notes in Mathematics, 69. Pitman (Advanced Publishing Program), Boston, Mass. -London, 1982.
  • 3Andreu F. Mazon J M, Simondon F, et al. Global existence for a degenerate nonlinear diffusion problem with nonlinear gradient term and source[J]. Math Ann. 1998, 314: 703-728.
  • 4Andreucci D. Degenerate parabolic equation with initial data measures[J]. Trans Math Soc. 1997, 349: 3911-3923.
  • 5PH. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions[J]. Diff Integral Equations, 2002, 15: 237-256.
  • 6Gilding B H, Guedda M, Kersner R. The Cauchy problems for ut = /ku + IVulq [J]. J Math Anal Appl, 2003, 284: 733-755.
  • 7Gilding B H. The Cauchy problem for ut - /ku + IVulq , large-time behavior[J]. J Math Pures Appl, 2005, 84(9): 753-785.
  • 8Shang H F, Li F Q. Singular parabolic equations with measures as initial data[J]. J Differential Equations, 2009, 247(6): 1720-1745.
  • 9Souplet Ph, Zhang Q S. Global solutions of inhomogeneous Hamilton-Jacobi equations[J]. J Anal Math, 2006, 99: 355-396.
  • 10Li Yu-xiang, Stabilization towards the steady state for a viscous Hamilton-Jacobi equation[J]. Com- mun Pure Appl Anal, 2009, 8: 917-924.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部