期刊文献+

一种基于最优算法的导弹鲁棒稳定性评估方法 被引量:1

Evaluation Method of Optimal-based Missile Robust Stability
下载PDF
导出
摘要 在对参数不确定性导弹控制系统进行多通道鲁棒稳定性评估时,传统方法在计算效率及结果可靠性方面存在不足。提出一种遗传-Nelder-Mead单纯形混合优化算法,利用遗传算法的全局搜索能力,寻找目标函数的近似最优解,并将其作为Nelder-Mead单纯形法搜索的初值,利用Nelder-Mead单纯形法局部寻优的优势,在近似解的邻域内搜索精确解。通过测试函数验证,算法在计算效率和计算精度方面都有很大提升。最后讨论了算法在导弹控制系统鲁棒稳定性评估中的应用价值。 When evaluating multi-channel robust stability of missile control system with parameters uncer- tainty, the traditional method has disadvantage in computational efficiency and reliability of results. There- fore, a Genetic-Nelder-Mead simplex hybrid optimization algorithm is presented in this paper. Using the global search ability of genetic algorithm to find the approximate optimal solution of the objective function, then we use it as the initial value of Nelder-Mead simplex method ,which has merit in local optimization, to search exact solution in the adjacent domain of approximate solution. It' s validated by test functions that the algorithm is improved in computational efficiency and precision of calculation. Finally application of the algorithm in missile control system robust stability evaluation is discussed.
出处 《四川兵工学报》 CAS 2014年第2期127-130,共4页 Journal of Sichuan Ordnance
关键词 遗传算法 Nelder—Mead单纯形法 鲁棒稳定性评估 genetic algorithm Nelder-Mead simplex method robust stability evaluation
  • 相关文献

参考文献12

  • 1Christopher Fielding, Andras Varga, Samir Bennani et al. Advanced Techniques for Clearance of Flight Control Laws [ M ]. Springer,2002.
  • 2Doyle J C. Analysis of Feedback Systems With Structured Uncertainties [ J ]. IEE Proceedings, 1982 ( 11 ) :260 - 265.
  • 3Doyle J C. Performance and Robustness Analysis for Struc- tured Uncertainty[ C]. Proceedings of the 22nd IEEE Con- ference on Decision and Control, 1982:629 - 636.
  • 4Wise K A. Singular Value Robustness Tests for Missile Au- topilot Uncertainties [ J ]. Journal of Guidance, Control, and Dynamics,1991 (7) :597 -606.
  • 5deGaston R R, Safonov M. Exact Calculation of the Multi- loop Stability Margin [ J ]. IEEE Transactions on Automatic Control, 1988 ( 1 ) : 156 - 171.
  • 6Yeung K S, Wang S S. A Simple Proof of Kharitonov' s The- orem [ J ]. IEEE Transactions on Automatic Control, 1987 ( 11 ) : 822 - 823.
  • 7Pengfei Guo, Xuezhi Wang, Yingshi Han. The Enhanced Genetic Algorithms for the Optimization Design [ C ]. Inter- national Conference on Biomedical Engineering and Infor- maties ,2010:2990 - 2994.
  • 8Kyriaki Gkontioudi, Helen D. Karatza. A simulation study of multi-criteria scheduling in grid based on genetic algorithms [ C ]. IEEE International Symposium on Parallel and Dis- tributed Processing with Applications ,2012:317 - 324.
  • 9Luersen M A, R. Le Riche, Guyon F. A constrained, global- ized,and bounded Nelder-Mead method for engineering op- timization [J]. Struct Multidise Optim,2004:43 -54.
  • 10ARPAD BURMEN, JANEZ PUHAN, TADEJ TUMA. Grid Restrained Nelder-Mead Algorithm [ J ]. Computational Op- timization and Applications,2005 (2) : 359 - 375.

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部