期刊文献+

桥梁裂痕检测与识别方法 被引量:4

Detection and recognition method for bridge fissure
下载PDF
导出
摘要 桥梁裂痕图像检测过程中,采集的桥梁裂痕图像容易出现模糊,且桥梁裂痕本身具有裂痕特征不明显、杂质干扰大等特点,为了达到对桥梁裂痕准确、快速检测的目的,提出了一种桥梁混凝土结构裂痕病害的自动检测识别方法.首先对采集到的桥梁裂痕图像进行去模糊处理,在此基础上利用非负特征提取桥梁裂痕目标信息,然后利用方差特征去除特征结果图中的伪特征,并使用特征图像中目标特征象素的圆投影特征来增强目标裂痕信息,同时进一步去除虚假特征.分别对不同的桥梁裂痕图像进行了多种不同类型的处理实验,包括裂痕图像去模糊前后的目标裂缝检测结果对比实验,特征图像的方差特征去噪实验,以及圆投影进行特征目标特征增强同时进一步去噪的实验.结果表明,该方法对桥梁裂痕的提取与检测有效,有一定的实际意义. The acquired image of bridge fissure is easy to be blurred,and the bridge fissure has the characters of non-remarkable fissure feature and excessive noise,during detecting bridge fissure.To detect the bridge fissure quickly and exactly,an automatic detection and recognition method for beton concrete girder bridge was proposed.First,the blur of the acquired bridge fissure image was removed,and the bridge fissure object information was extracted from the deblurred image by using the non-negative feature.Then false features were eliminated from the feature intensity image with the variance feature method.The circle projection method was used to enhance the object fissure information and to further eliminate the false feature.Different types of experiments are implemented on bridge fissure images,which include the fissure detection result comparison experiment before and after deblurring,the feature image denoising experiment using variance feature,the object information enhancement experiment using circle projection.The results demonstrate that the method proposed in this paper is effective for the bridge fissure extraction and detection.
出处 《武汉工程大学学报》 CAS 2014年第2期63-67,共5页 Journal of Wuhan Institute of Technology
基金 国家自然科学基金面上项目(61175013 61305039) 湖北省自然科学基金创新群体项目(2012FFA046)
关键词 桥梁病害 模糊裂痕 图像特征 自动识别 bridge distress blurry crack image feature automatic recognition
  • 相关文献

参考文献6

二级参考文献25

  • 1刘阳成,朱枫.一种新的棋盘格图像角点检测算法[J].中国图象图形学报,2006,11(5):656-660. 被引量:33
  • 2查旭东,王文强.基于图像处理技术的连续配筋混凝土路面裂缝宽度检测方法[J].长沙理工大学学报(自然科学版),2007,4(1):13-17. 被引量:25
  • 3王刚,肖亮,贺安之.脊小波变换域模糊自适应图像增强算法[J].光学学报,2007,27(7):1183-1190. 被引量:28
  • 4JTG/TJ22—20HD8,公路桥梁加固设计规范[S].
  • 5TEOMETE E, AMIN V R, CEYLAN H. Digital Image Processing for Pavement Distress Analyses [ C ] // Proceedings of the 2005 Mid-Continent Transportation Research Symposium. Iowa: Is. n. ], 2005:1 -13.
  • 6XU Bugao, HUANG Yaxiong. Development of Automatic Pavement Surface Distress Inspection System [ R ]. Austin : Center for Transportation Research, the University of Texas at Austin, 2005.
  • 7CHENG H D, CHEN J R. Novel Approach to Pavement Cracking Detection Based on Ruzzy Set Theory [J].Journal of Computing in Civil Engineering, ASCE, 1999, 13 (4): 270-280.
  • 8JTG D62--2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].
  • 9TONG Xu-hang, GUO Jie, LING Yun, et al. A new image- based method for concrete bridge bottom crack detection[C]// Image Analysis and Signal Processing. New York: IEEE, 2011:568-571.
  • 10XU Bing, YIN Guan-sheng, LIU Xiao-wei. A technology based on image processing for the bridge crack measurement[J]. Applied Me- chanics and Materials, 2012, 138/139:569-574.

共引文献71

同被引文献24

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部