期刊文献+

马特拉算法在遥测数据短期预测中的应用 被引量:4

Application of Mallat algorithm in short-term forecasting of telemetry data
下载PDF
导出
摘要 为了提高遥测数据预测的精度和实时性,针对遥测数据的非平稳性和周期性特点,引入小波分析的预测技术,提出了一种对遥测数据序列进行不同频段上的分解方法:遥测数据时间序列依据选定的N阶多贝西小波和分解尺度值2分解为低频分量和高频分量,针对不同分量建立了基于马特拉算法、周期自回归模型和指数平滑法的时间序列短期预测模型,各分量预测结果经小波变换的逆算法重构后输出.仿真实验结果表明该方法满足遥测数据工程预测要求,能够有效地解决遥测数据的短期预测问题.通过对遥测数据短期预测结果的研究分析可提前判断卫星潜在的趋势,为指挥人员的正确决策提供科学依据. To improve the accuracy and real-time of telemetry data prediction,according to the non-stationarity and periodicity of telemetry data,the wavelet analysis forecasting technology was introduced and a decomposition method of different frequency ranges on the sequence of telemetry data were proposed.The time series of telemetry data were decomposed into low frequency components and high frequency components based on dbN wavelet function and decomposition scale 2.A short-term prediction model based on Mallat algorithm,periodic auto-regression model and exponent-smoothing algorithm was established for different components.The last result was output after reconstruction by the inverse algorithm of wavelet transform.Simulation results show that such method meets the project requirements of telemetry data,which can solve the short-term forecasting problem of telemetry data effectively.Moreover,it can forecast the potential tendency in advance based on the analysis of short-term forecasting result,which can provide a scientific basis for commander in right decision-making.
出处 《武汉工程大学学报》 CAS 2014年第2期73-78,共6页 Journal of Wuhan Institute of Technology
基金 国家自然科学基金项目(61103143) 河南省教育厅科学技术研究重点项目(14B520014) 周口师范学院青年基金项目(zknuc0214)
关键词 马特拉算法 周期自回归模型 指数平滑法 短期预测 Mallat algorithm periodic auto-regression model exponential smoothing method short-term forecasting
  • 相关文献

参考文献7

二级参考文献32

  • 1高广军,田红旗,姚松,刘堂红,毕光红.兰新线强横风对车辆倾覆稳定性的影响[J].铁道学报,2004,26(4):36-40. 被引量:117
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 3丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:185
  • 4王军,彭喜元,彭宇.一种新型复杂时间序列实时预测模型研究[J].电子学报,2006,34(B12):2391-2394. 被引量:11
  • 5DengJL.Thelaw of grey cause and white effect in GM(1,1)[J].The Journal of Grey System,1999,11(3):222-225.
  • 6Hoppmarm U, Koenig S, Tielkes T, et al. A short-term strong wind prediction model for railway application: design and verification[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90:1127-1134.
  • 7Odaka T, Ashiya K, Tsukada S, et al. New stand-alone and advanced earthquake early warning systems designed to protect railways[J]. Transportation Research Record, 2006, 1943: 20-24.
  • 8Shiibashi A. Safety measures on the station platform [J]. Japanese Railway Engineering, 2001, 146: 4-7.
  • 9BiUinton R, CHEN Hua, t3hajar R. Time-series models for reliability evaluation of power systems including wind energy[J]. Microelectronics and Reliability, 1996, 36(9): 1253-1261.
  • 10Fonte P M, Silva G X, Quadrado J C. Wind speed prediction using artificial neural networks[J]. WSEAS Transactions on Systems, 2005, 4(4): 379-383.

共引文献49

同被引文献29

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部