期刊文献+

全波形机载激光数据分解研究 被引量:8

Research on decomposition of full-waveform airborne laser data
下载PDF
导出
摘要 针对进行全波形机载激光数据分解时采用重力中心(COG)方法和高斯脉冲拟合(GPF)方法难以检测到全波形数据中的叠加波和弱波脉冲,从而造成地物信息丢失的问题,提出了一种改进的严格高斯检测(RGD)算法。该算法首先采用高斯滤波提高信噪比,然后通过脉冲检测估计初始参数,并利用Trust Region参数优化方法进行高斯拟合,最终有效地分解出波形中的叠加波和弱波。利用提取到的每个单次回波的标准差、振幅、位置等模型参数能够得到半高波宽(FWHM)、后向散射截面和回波强度等波形信息。多次试验表明,与RGD算法相比,该方法可以有效地提高叠加波的识别率,减小波形拟合误差。 Based on the analysis of the present techniques of decomposing full-waveform airborne laser data, a modified rigorous Gaussian detection(RGD) algorithm was proposed to solve the problem that in waveform decomposition the center of gravity(COG) method and the Gaussian pulse fitting(GPF) method can not extract weak pulses and over- lapped pulses in the full-waveform data, so some earth surface feature information can not be achieved. Firstly, the algorithm uses the Gaussian filtering to improve the signal to noise ratio. Then initial parameters are estimated through pulse detection, and the trust region parameters optimization method is adopted to perform the Gaussian fit- ting. Finally, the weak pulses and the overlapped pulses are effectively decomposed. By using the model parameters such as standard deviation, amplitude and the position of each single echo extracted from decomposition, the full width at half maximum( FWHM ), backscattered cross-section and echo intensity, etc. , can be obtained. The numer- ous experiments were performed, and the results show that the proposed algorithm can effectively improve the recog- nition rate of overlapped pulses and reduce the error of waveform fitting compared with the rigorous Gaussian detec- tion algorithm.
出处 《高技术通讯》 CAS CSCD 北大核心 2014年第2期144-151,共8页 Chinese High Technology Letters
基金 国家科技支撑计划(2012BAH31B01) 北京市自然科学基金重点项目(B类)(KZ201310028035)资助项目
关键词 全波形 叠加波和弱波 波形分解 RGD算法 TRUST REGION full-waveform, weak pulses and overlapping pulses, decomposition of waveform, Gaussian detection(RGD) algorithm, Trust Region
  • 相关文献

参考文献2

二级参考文献18

  • 1王兴华 ,王何宇 ,Ming-Jun Lai .数值差商公式研究[J].中国科学(A辑),2005,35(6):712-720. 被引量:7
  • 2夏爱生,陈博文,胡宝安,王瑞,王强.二阶三点数值微分公式的外推算法[J].天津理工大学学报,2005,21(6):37-39. 被引量:4
  • 3尹秀玲,闫立梅.一种数值微分方法[J].德州学院学报,2007,23(2):39-41. 被引量:3
  • 4Ackmann , F. 1999. Airborne laser scanning-present status and future expectations. ISPRS Journal of Photogrammetry &Remote Sensing, 54:64--67
  • 5Baltsavias E P. 1999. A comparison between photogrammetry and laser scanning. 1SPRS Journal of Photogrammetry & Remote Sensing, 54 : 83 --94
  • 6Bilmes J A. 1998. A gentle tutorial of the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. Department of Electrical Engineering and Computer Science. U. C. Berkeley TR-97-021
  • 7Dempster A P, Laird N M, Rubin DB, 1977. Maximum Likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B ,39 ( 1 ), 1--38
  • 8Gamba P, Houshmand B. 2000. Digital surface models and building extraction : a comparison of IFSAR and LIDAR data. IEEE Transaction on Geoscience and Remote Sensing, 38 : (4) : 1959--1968
  • 9Hofton M A, Blair J B, Minster J. 2000. Decomposition of laser altimeter Waveforms. IEEE Transactions on Geoscience and Remote Sensing, 38 : ( 4 ) 1989--1996
  • 10Oliver J J, Baxter R A, Wallace C S. 1996. Unsupervised learning using MML. Machine Learning. Proceedings of the Thirteenth International Conference ( ICML 96 ). Morgan Kaufmann Publishers, San Francisco CA USA

共引文献29

同被引文献72

  • 1赖旭东,秦楠楠,韩晓爽,王俊宏,侯文广.一种迭代的小光斑LiDAR波形分解方法[J].红外与毫米波学报,2013,32(4):319-324. 被引量:27
  • 2张德丰.MATLAB小波分析[M].北京:机械工业出版社,2011.
  • 3Mallet C, Bretar F. Full-waveform topographic lidar: State-of-the-art[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(1): 1-16.
  • 4Wagner W, Ullrich A, Melzer T, et al.. From single-pulse to full-waveform airborne laser scanning: potential and practice challenges[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2004, 35(Part B3): 201-206.
  • 5Wagner W, Ullrich A, Ducic V, et al.. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. 1SPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 100-112.
  • 6Jutzi B, Stilla U. Range determination with waveform recording laser systems using a wiener filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(2): 95-107.
  • 7Roncat A, Wagner W, Melzer T, et al.. Echo detection and localization in full-waveform airborne laser scanner data using the averaged square difference function estimator[J]. The Photogrammetric Journal of Finland, 2008, 21(1): 62-75.
  • 8Slota M. Decomposition techniques for full-waveform airborne laser scanning data[J]. Geomatics and Environmental Engineering, 2014, 8(1): 61-74.
  • 9Lin Y, Mills J, Smith-Voysey S. Rigorous pulse detection from full-waveform airborne laser scanning data[J]. International Journal of Remote Sensing, 2010, 31(5): 1303-1324.
  • 10Wang C. Exploring weak and overlapped returns of a LiDAR waveform with a wavelet-based echo detector[J]. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2012, 39(B7): 529-534.

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部