期刊文献+

Transverse Dimension of R^n Actions on Compact Foliated Manifolds

Transverse Dimension of R ̄n Actionson Compact Foliated Manifolds
下载PDF
导出
摘要 Consider a foliate Rn-action on a compact connected foliated manifold (M,F). Let mand r be the codimension of F and the (transverse)rank of (M,F)respectively. Suppose r<m.In this paper we prove that either there exists an orbit of the Rn-action of transverse dimension< (m + r)/2 or F can be arbitrarily approached by foliations with rank≥r+1. Moreover weshow that this kind of orbits exists in the following three cases: if F is Riemannian ;when all itsleaves are closed or if X(M)≠0(then r=0).On the other hand all foliate Rn-action on (S3,F) has a fixed leaf if dimF=1.Our result generalies a well known Lima's theorem about Rn-actions on surfaces.
作者 Francisco Javier
机构地区 Geometria Y
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 1995年第4期86-97,共12页 数学季刊(英文版)
关键词 transverse action FOLIATION 紧叶状流形 紧连通流形 维数

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部