摘要
RichardA .Brualdi和J .QuinnMassey在 [1]中引入了图的关联着色概念 ,并且提出了关联着色猜想 ,即 :每一个图G都可以用Δ(G) +2种色正常关联着色 .B .Guiduli[2 ]说明关联着色的概念是I.Algor和N .Alon[3]提出的有向星荫度的一个特殊情况 ,并证实 [1]的关联着色猜想是错的 ,给出图G的关联色数的一个新的上界是Δ(G) +O(Log(ΔG) ) .[4 ]确定了某些特殊图类的关联色数 .本文给出了路和完全图的笛卡尔积图的关联色数 ,而且利用此结果又确定了完全图Kn 的广义图K(n ,m)
Richard A.B rualdi and Jennifer J.Quinn Massey defined the incidence coloring in [1] and confectured: every graph can be incidence colored with △(G)+2 colors.B. Guiduli [2] showed that the concept of incidence coloring is a special case of directed star arboricity, introduced by I.Algor and N.Alon [3] and proved that the conjecture in [1] is false. According to a tight upper bound for directed star arboricity, he gave an upper bound for incidence coloring number, namely; Inc(G)≤△+O(log△), where △=△(G). chen etc.determined the incidence coloring number of some special graphs in [4]. In this paper, we give the incidence chromatic number of cartesian product of path and complete graph. According to the result we give the incidence chromatic number of K(n,m).
出处
《经济数学》
2000年第3期45-50,共6页
Journal of Quantitative Economics