期刊文献+

用加权残余法求解含大参数的Duffing方程 被引量:4

Approximate Solution for Duffing Equation with Large Parameter via Method of Weighted Residuals
下载PDF
导出
摘要 本文应用加权残余法分析了含大参数的 Duffing方程 ,并得到了整个区域内 (0 <ε<∞ )一致有效的近似解 ,得到的近似周期的最大相对误差小于 7.0 % ,当参数为小量时 (ε 1 ) ,得到的近似解和摄动解完全一致 . In this paper, the Duffing equation with very large parameter (0< ε <∞) is studied by the weighted residual method. The obtained results are valid not only for small parameter, but also for very large values of the parameter. Even when ε→∞ , the maximal relative error of the periodic is less than 7 0%.
作者 何吉欢
机构地区 上海大学
出处 《工科数学》 2000年第4期52-54,共3页 Journal of Mathematics For Technology
关键词 加权残余法 DUFFING方程 近似解 振动解 大参数 weighted residual method, Duffing equation
  • 相关文献

参考文献6

  • 1Finlayson B A. The method of weighted residuals and variational principles[M]. Acad. Press, 1972.
  • 2朱昌明.用加权残数法解具有小参数摄动的Dufing方程[J].力学与实践,1996,18(6):35-36. 被引量:2
  • 3Nayfeh A H. Problems in Perturbation[M]. John Wiley & Sons, 1985.
  • 4He, J H. Variational iteration method: a kind of nonlinear analytical technique, International Journal of Nonlinear Mechanics, 1999,34(4) : 699-708.
  • 5He. J H. An approximate solution technique depending upon an artificial parameter[J]. Communications in Nonlinear Science and Numerical Simulation, 1998,3(2): 2998. 92-97.
  • 6He, J H, Areview on some new recently developed nonlinear analytic techniques[J]. International Journal of Nonlinear sciences and Numerical Simulation, 2000,1(1): 51-70.

共引文献1

同被引文献17

  • 1廖世俊.建立在同伦基础之上的一种非线性分析方法(2)——单自由度守恒系统周期的通用公式[J].上海力学,1995,16(2):128-138. 被引量:2
  • 2A.H.奈弗.摄动方法[M].上海:科技出版社,1984.322-323.
  • 3He JH. Homotopy perturbation technique[ J]. Comput. Methods Appl. Mech. Engrg. 1999,178 (3) :257 - 262.
  • 4J.H. Nayfeh . Introduction to Perturbation Techniques [ M ]. New York : Wiley, 1993.
  • 5Ali H. Nayfeh. Perturbation Methods [ M ]. New York : Wiley, 1973.
  • 6He JH. Variational iteration method: New development and applications[J]. Comput. Math. Appl. ,2007,54(7) :881 -894.
  • 7He JH. Comment on He's frequency formulation for nonlinear oscillators[J]. Eur. J. Phys. , 2008,29(4) : L19 - L22.
  • 8He JH. An improved amplitude -frequency formulation for nonlinear oscillators [ J ]. Int. J. Nonlinear Sci. Numer. Simul. , 2008, 9(2) :211 -212.
  • 9Lei Geng, Xu - Chu Cai. He's frequency formulation for nonlinear oscillators [ J ]. Eur. J. Phys. , 2007,28 ( 5 ) :923 - 931.
  • 10He JH. Variational approach for nonlinear oscillators [ J ]. Chaos, Solitons & Fractals, 2007,34 (5) :1430 - 1439.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部